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Abstract

In this paper, we develop a second-order well-balanced central-upwind scheme for
the Euler equations of gas dynamics with gravitation. The proposed scheme is capable of
exactly preserving steady-state solutions expressed in terms of a nonlocal equilibrium vari-
able. A crucial step in the construction of the second-order scheme is a well-balanced piece-
wise linear reconstruction of equilibrium variables, which is combined with a well-balanced
evolution in time, achieved by reducing the amount of numerical viscosity (present at the
central-upwind scheme) in the areas where the flow is at (near) steady-state regime. We
show the performance of our newly developed central-upwind scheme and demonstrate
importance of perfect balance between the fluxes and gravitational forces on a number of
one- and two-dimensional examples.
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1 Introduction

We consider the Euler equations of gas dynamics with gravitation, which can be written in the
two-dimensional (2-D) case as

qt + F (q)x + G(q)y = S(q), (1.1)
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where

q :=


ρ

ρu

ρv

E

 (1.2)

is a vector of conservative variables, and

F (q) =


ρu

ρu2 + p

ρuv

u(E + p)

 and G(q) :=


ρv

ρuv

ρv2 + p

v(E + p)

 (1.3)

are the fluxes in the x- and y-directions, and

S(q) =


0

−ρφx

−ρφy

−ρuφx − ρvφy

 (1.4)

is the source term. Here, ρ is the density, u and v are the x- and y-velocities, E is the total
energy, p is the pressure and φ is the time-independent linear gravitational potential.

The system (1.1)–(1.4) is closed using the following equation of state (EOS):

E =
p

γ − 1
+
ρ

2
(u2 + v2), (1.5)

where γ stands for the specific heat ratio. Here, we consider a physically relevant case, in which
the gravitational potential is taken in the y-direction only, that is, φx = 0 and φy = g.

The system of balance laws (1.1)–(1.5) is used to model astrophysical and atmospheric
phenomena in many fields including supernova explosions [16], (solar) climate modeling and
weather forecasting [3]. In many physical applications, solutions of the system (1.1)–(1.5) are
small perturbations of the steady states. Capturing such solutions numerically is a challenging
task since the size of these perturbations may be smaller than the size of the truncation error
on a coarse grid. To overcome this difficulty, one can use very fine grid, but in many physically
relevant situations, this may be unaffordable. Therefore, it is important to design a well-
balanced numerical method, that is, the method which is capable of exactly preserving some
steady state solutions. Then, perturbations of these solutions will be resolved on a coarse grid
in a non-oscillatory way.

Well-balanced schemes were introduced in [14] and mainly developed in the context of
shallow water equations, for details, see, e.g., [1, 2, 4, 6, 8–11, 15, 17, 20, 23, 28–31, 37]. Some of
these schemes have been extended for the Euler equations with gravitational fields. In [24],
quasi-steady wave-propagation methods were developed for models with a static gravitational
field. In [3], well-balanced finite-volume methods, which preserve a certain class of steady states,
were derived for nearly hydrostatic flows. In [26,34,38], gas-kinetic schemes were extended to the
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multidimensional gas dynamic equations and well-balanced numerical methods were developed
for problems, in which the gravitational potential was modeled by a piecewise step function.
More recently, higher order finite-difference methods for the gas dynamics with gravitation were
introduced in [36].

Our goal is to develop a well-balanced numerical method capable of exactly preserving
the steady state solutions, which can be derived as follows. Consider, for simplicity, a one-
dimensional (1-D) version of the system (1.1)–(1.5):

qt + G(q)y = S(q), (1.6)

where

q :=


ρ

ρv

E

 , G(q) :=


ρv

ρv2 + p

v(E + p)

 , S(q) :=


0

−ρg
−ρvg

 , E =
p

γ − 1
+
ρv2

2
. (1.7)

The steady-state solutions of (1.6), (1.7) can be obtained by solving the time-independent
system G(q)y = S(q). To this end, we first incorporate the source term −ρg into the flux,
introduce a new global variable w,

w := p+R, R(y, t) := g

y∫
ρ(ξ, t) dξ, (1.8)

and rewrite the system G(q)y = S(q) as
(ρv)y = 0,

(ρv2 + w)y = 0,

(v(E + p))y = −ρvg.
(1.9)

It then immediately follows that the simplest steady state of (1.9), (1.8) is the motionless one,
for which

v ≡ 0 and w ≡ Const. (1.10)

The corresponding 2-D steady state is

u = v ≡ 0 and w ≡ Const. (1.11)

In this paper, we develop a new well-balanced central-upwind (CU) scheme for the Euler
equations with gravitation. CU schemes were initially introduced in [21] for hyperbolic systems
of conservation laws, further developed in [18, 19, 22] and extended to systems of balance laws
in [2, 4–7, 17, 20]. The CU schemes are Godunov-type finite-volume methods that are efficient,
highly accurate and do not require any (approximate) Riemann problem solver (the latter makes
the CU schemes applicable in a “black-box manner” to a wide variety of multidimensional
hyperbolic systems of conservation and balance laws). In the CU schemes, the numerical
solution is realized in terms of cell averages of the conservative variables (q := (ρ, ρv, E)T

or q := (ρ, ρu, ρv, E)T for the 1-D and 2-D Euler equations, respectively). The cell averages
are used to construct a global piecewise polynomial approximation of the numerical solution,
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which is then used to evolve the computed solution in time. Unfortunately, the CU schemes
implemented using a reconstruction procedure of the conservative variables do not posses the
well-balanced property. We therefore modify the reconstruction step and introduce a special
reconstruction based on the equilibrium variables, (ρ, ρv, w)T (or (ρ, ρu, ρv, w)T in 2-D) rather
than the conservative ones. This results in a well-balanced CU scheme for the Euler equations
with gravitation.

The paper is organized as follows. In §2 and §3, we develop the well-balanced CU schemes
for 1-D and 2-D Euler equations with gravitation. Special 1-D and 2-D well-balanced recon-
structions are presented in §2.2.1 and 3.1.1, respectively. In §4, we present a number of 1-D
and 2-D numerical examples.

2 One-Dimensional Numerical Method

In this section, we first (§2.1) briefly describe the semi-discrete CU scheme from [19] and then
(§2.2) derive its well-balanced modification for the 1-D Euler equations with gravitation.

2.1 Second-Order Semi-Discrete Central-Upwind Scheme

For simplicity, we partition the computational domain into finite-volume cells Ck := [yk− 1
2
, yk+ 1

2
]

of size |Ck| = ∆y centered at yk = k∆y, k = kL, . . . , kR, and the cell interfaces are denoted
by yk± 1

2
:= (k ± 1/2)∆y. We assume that at time level t, the cell averages of the numerical

solution, qk(t) := 1
∆y

∫
Ck

q(y, t) dy, are available.

A semi-discrete CU scheme from [19] applied to (1.6), (1.7) is the following system of ODEs:

d

dt
qk = −

Gk+ 1
2
− Gk− 1

2

∆y
+Sk, (2.1)

where

Gk+ 1
2

:=
b+
k+ 1

2

G(qN
k )− b−

k+ 1
2

G(qS
k+1)

b+
k+ 1

2

− b−
k+ 1

2

+ βk+ 1
2

(
qS
k+1 − qN

k

)
, βk+ 1

2
:=

b+
k+ 1

2

b−
k+ 1

2

b+
k+ 1

2

− b−
k+ 1

2

, (2.2)

are numerical fluxes, and
Sk = (0,−gρk,−g(ρv)k)T

are approximations of the cell averages of the source term.
In (2.2), qN

k and qS
k+1 are the one-sided point values of the computed solution at cell interfaces

y = yk+ 1
2
. To construct a second-order scheme, these variables are to be calculated using the

piecewise linear reconstruction

q̃(y) =
∑
k

(
qk + (qy)k(y − yk)

)
·χCk

(y), (2.3)

where χCk
is a characteristic function of the interval Ck. We then obtain

qN
k := q̃(yk+ 1

2
− 0) = qk +

∆y

2
(qy)k, qS

k+1 := q̃(yk+ 1
2

+ 0) = qk+1 −
∆y

2
(qy)k+1. (2.4)
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To avoid oscillations, the vertical slopes in (2.4), (qy), are to be computed using a nonlinear
limiter applied to the cell averages {qk}. In all of the numerical experiments presented in §4, we
have used a generalized minmod limiter (see, e.g., [25,27,33,35]) applied in the component-wise
manner:

(qy)k = minmod

(
θ
qk+1 −qk

∆y
,
qk+1 −qk−1

2∆y
, θ

qk −qk−1

∆y

)
, (2.5)

where the minmod function is defined by

minmod(z1, z2, . . .) :=


min(z1, z2, . . .), if zi > 0 ∀i,
max(z1, z2, . . .), if zi < 0 ∀i,
0, otherwise,

(2.6)

and the parameter θ ∈ [1, 2] controls the amount of numerical dissipation: The use of larger
values of θ typically leads to less dissipative, but more oscillatory scheme.

Finally, the one-sided local speeds of propagation, b±
k+ 1

2

, are estimated using the smallest

and largest eigenvalues of the Jacobian ∂G
∂q

:

b+
k+ 1

2

= max
(
vN
k + cN

k , v
S
k+1 + cS

k+1, 0
)
, b−

k+ 1
2

= min
(
vN
k − cN

k , v
S
k+1 − cS

k+1, 0
)
, (2.7)

where the velocities, vN
k and vS

k+1, are obtained using the identity v ≡ (ρv)/ρ, cN
k and cS

k+1 are
the speeds of sound defined by c2 = γp/ρ, and the pressures, pN

k and pS
k+1, are obtained using

the EOS (1.7).
Unfortunately, the CU scheme (2.1)–(2.7) is not capable of exactly preserving the steady-

state solution (1.10). Indeed, substituting (1.10) into (2.1)–(2.2) and noting that b+
k+ 1

2

= −b−
k+ 1

2

,

∀k, we obtain the ODE system

dρk
dt

= −
βk+ 1

2
(ρS

k+1 − ρN
k )− βk− 1

2
(ρS

k − ρN
k−1)

∆y
,

d(ρv)k
dt

= −
(pS

k+1 + pN
k )− (pS

k + pN
k−1)

2∆y
,

dEk

dt
= −

βk+ 1
2
(pS

k+1 − pN
k )− βk− 1

2
(pS

k − pN
k−1)

(γ − 1)∆y
,

(2.8)

whose RHS does not necessarily vanish and hence the steady state would not be preserved at
the discrete level. We would like to stress that even for the first-order version of the CU scheme
(2.1)–(2.7), that is, when (qy)k ≡ 0 in (2.3), (2.4), the RHS of (2.8) does not vanish. This
means that the lack of balance between the numerical flux and source terms is a fundamental
problem of the scheme. We also note that for smooth solutions, the balance error in (2.8) is
expected to be of order (∆y)2, but a coarse grid solution may contain large spurious waves.

2.2 Well-Balanced Central-Upwind Scheme

In this section, we present a well-balanced modification of the CU scheme from §2.1. The new
scheme will be developed by first introducing well-balanced reconstruction performed on the
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equilibrium variables rather than the conservative ones and then deriving modified formulae for
the numerical fluxes and sources.

To this end, we once again incorporate the source term −ρg into the flux and rewrite the
system (1.6)–(1.7) as follows: 

ρt + (ρv)y = 0,

(ρv)t + (ρv2 + w)y = 0,

Et + (v(E + p))y = −ρvg,
(2.9)

which can be put into the vector form (1.6) with

q :=


ρ

ρv

E

 , G(q) :=


ρv

ρv2 + w

v(E + p)

 , S(q) :=


0

0

−ρvg

 ,

where w is given by (1.8).

2.2.1 Well-Balanced Reconstruction

We now describe a special reconstruction, which is used to derive a well-balanced CU scheme.
The main idea is to reconstruct equilibrium variables (ρ, ρv, w) rather than (ρ, ρv, E). For
the first two components we still use formula (2.3) to obtain the same piecewise linear recon-
structions as before, ρ̃(y) and (ρ̃v)(y), and compute the corresponding point values of ρN,S and
(ρv)N,S, and then obtain vN,S = (ρv)N,S/ρN,S.

To reconstruct the third equilibrium variable w, we first compute the point values of R by
integrating the piecewise linear reconstruction of ρ,

ρ̃(y) =
∑
k

(
ρk + (ρy)k(y − yk)

)
·χCk

(y),

which results in the piecewise quadratic approximation of R:

R̃(y) = g

y∫
y
kL− 1

2

ρ̃(ξ) dξ = g
∑
k

[
∆y

k−1∑
i=kL

ρi +ρk(y − yk− 1
2
) +

(ρy)k
2

(y − yk− 1
2
)(y − yk+ 1

2
)
]
·χCk

(y).

Then, the point values of R at the cell interfaces and cell centers are

Rk+ 1
2

= g∆y
k∑

i=kL

ρi and Rk = g∆y
k−1∑
i=kL

ρi +
g∆y

2
ρk −

g(∆y)2

8
(ρy)k, (2.10)

respectively, and the values of w at the cell centers are set as

wk = pk +Rk, (2.11)

where pk = (γ−1)
(
Ek −

ρk
2
v2
k

)
is obtained from the corresponding EOS (1.5) and vk = (ρv)k/ρk.
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Equipped with (2.11), we then apply the minmod reconstruction procedure to {wk} and
obtain the point values of w at the cell interfaces:

wN
k = wk +

∆y

2
(wy)k, wS

k+1 = wk+1 −
∆y

2
(wy)k+1,

where

(wy)k = minmod

(
θ
wk+1 − wk

∆y
,
wk+1 − wk−1

2∆y
, θ

wk − wk−1

∆y

)
.

Finally, the point values of p and E needed for computation of numerical fluxes are

pN
k = wN

k −Rk+ 1
2
, pS

k = wS
k −Rk− 1

2

and

EN
k =

pN
k

γ − 1
+

(
(ρv)N

k

)2

2ρN
k

, ES
k =

pS
k

γ − 1
+

(
(ρv)S

k

)2

2ρS
k

,

respectively.

Remark 2.1 In practice, it is convenient to compute the point values of Rk+ 1
2

and Rk recur-

sively, that is, replacing (2.10) with

RkL− 1
2

= 0,


Rk+ 1

2
= Rk− 1

2
+ g∆yρk,

Rk = Rk− 1
2

+
g∆y

2
ρk −

g(∆y)2

8
(ρy)k,

k = kL, . . . , kR. (2.12)

2.2.2 Well-Balanced Evolution

The cell-averages of q are evolved in time according to the following system of ODEs:

d

dt
qk = −

Gk+ 1
2
− Gk− 1

2

∆y
+Sk. (2.13)

Here, the second and third components of the numerical fluxes G are computed the same way
as in (2.2):

G (2)

k+ 1
2

:=
b+
k+ 1

2

(
ρN
k (vN

k )2 + wN
k

)
− b−

k+ 1
2

(
ρS
k+1(vS

k+1)2 + wS
k+1

)
b+
k+ 1

2

− b−
k+ 1

2

+ βk+ 1
2

(
(ρv)S

k+1 − (ρv)N
k

)
, (2.14)

G (3)

k+ 1
2

:=
b+
k+ 1

2

vN
k (EN

k + pN
k )− b−

k+ 1
2

vS
k+1(ES

k+1 + pS
k+1)

b+
k+ 1

2

− b−
k+ 1

2

+ βk+ 1
2

(
ES

k+1 − EN
k

)
, (2.15)

while the first component should be modified in order to preserve the steady state (1.10):

G (1)

k+ 1
2

=
b+
k+ 1

2

(ρv)N
k − b−k+ 1

2

(ρv)S
k+1

b+
k+ 1

2

− b−
k+ 1

2

+ βk+ 1
2
H

(
|wk+1 − wk|

∆y
·
ykR+ 1

2
− ykL− 1

2

maxk{wk}

)(
ρS
k+1 − ρN

k

)
.

(2.16)
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Notice that the last term in (2.16) is now multiplied by a smooth function H, designed to be
very small when the computed solution is locally (almost) at steady state, that is, at the cell

interfaces where |wk+1−wk|
∆y

∼ 0, and to be very close to 1 elsewhere. This is done in order to
guarantee the well-balanced property of the scheme as we show in Theorem 2.1 proved in §2.2.3.
On the other hand, the modification of the original CU flux is quite minor since H(ψ) is very
close to 1 unless ψ is very small.

A sketch of a typical function H is shown in Figure 2.1. In all of our numerical experiments,
we have used

H(ψ) =
(Cψ)m

1 + (Cψ)m
, (2.17)

with C = 200 and m = 6. To reduce the dependence of the computed solution on the choice of

particular values of C and m, the argument of H in (2.16) is normalized by a factor
y
kR+1

2
−y

kL− 1
2

maxk{wk}
,

which makes H(ψ) dimensionless.

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

ψ

H

Figure 2.1: Sketch of H(ψ).

Finally, the cell averages of the source term are approximated using the midpoint quadrature
rule as follows:

Sk = (0, 0,−g(ρv)k)T . (2.18)

2.2.3 Proof of the Well-Balanced Property

Theorem 2.1 The semi-discrete CU scheme (2.13)–(2.18) coupled with the reconstruction de-
scribed in §2.2.1 is well-balanced in the sense that it preserves the steady state (1.10).

Proof: Assume that at certain time level, we have

vN
k ≡ vk ≡ vS

k ≡ 0 and wN
k ≡ wk ≡ wS

k ≡ ŵ, (2.19)

where ŵ is a constant. To show that the proposed scheme is well-balanced, we need to show
that the right-hand side (RHS) of (2.13) is identically equal to zero for the data in (2.19). Since
the source term (2.18) vanishes for vk = 0, it is enough to prove that the numerical fluxes are
constant for the data in (2.19).

Indeed, the first components of the numerical flux, (2.16), vanish since vN
k = vS

k+1 = 0 and

wk = wk+1 = ŵ (the latter implies H
(
|wk+1−wk|

∆y
·
y
kR+1

2
−y

kL− 1
2

maxk wk

)
= H(0) = 0). The second
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components of the numerical flux, (2.14), are constant and equal to ŵ since vN
k = vS

k+1 = 0 and
wN

k = wS
k+1 = ŵ. Finally, the third components of the numerical flux, (2.15), also vanish:

G(3)

k+ 1
2

= βk+ 1
2

(
ES

k+1 − EN
k

)
=
βk+ 1

2

γ − 1

(
pS
k+1 − pN

k

)
=
βk+ 1

2

γ − 1

[(
wS

k+1 −Rk+ 1
2
)− (wN

k −Rk+ 1
2

)]
= 0,

since wN
k = wS

k+1 = ŵ. �

3 Two-Dimensional Numerical Method

In this section, we describe the well-balanced semi-discrete CU scheme for the 2-D Euler equa-
tions with gravitation. Similarly to the 1-D case, we rewrite the system (1.1)–(1.5) as follows:

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + w)y = 0,

Et + (u(E + p))x + (v(E + p))y = −ρvg.

(3.1)

This system can also be written in the vector form (1.1) with

q :=


ρ

ρu

ρv

E

 , F (q) :=


ρu

ρu2 + p

ρuv

u(E + p)

 , G(q) :=


ρv

ρuv

ρv2 + w

v(E + p)

 , S(q) :=


0

0

0

−ρvg

 ,

where

w := p+R, R(x, y, t) := g

y∫
ρ(x, ξ, t) dξ. (3.2)

3.1 Well-Balanced Central-Upwind Scheme

We consider a rectangular computational domain and partition it into the uniform Cartesian
cells Cj,k := [xj− 1

2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
] of size |Cj,k| = ∆x∆y centered at (xj, yk) = (j∆x, k∆y),

j = jL, . . . , jR, k = kL, . . . , kR. Similarly to the 1-D case, we assume that at a certain time
level t, the cell averages of the computed numerical solution,

qj,k(t) :=
1

∆x

1

∆y

∫∫
Cj,k

q(x, y, t) dx dy, (3.3)

are available.
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3.1.1 Well-Balanced Reconstruction

Similarly to the 1-D case, we reconstruct only the first three components of the conservative
variables q (ρ, ρu and ρv):

q̃ (i)(x, y) = q
(i)
j,k + (q(i)

x )j,k(x− xj) + (q(i)
y )j,k(y − yk), (x, y) ∈ Cj,k, i = 1, 2, 3, (3.4)

and compute the corresponding point values at the cell interfaces (xj± 1
2
, yk) and (xj, yk± 1

2
):

(q(i))E
j,k := q̃ (i)(xj+ 1

2
− 0, yk) = q

(i)
j,k +

∆x

2
(q(i)

x )j,k,

(q(i))W
j,k := q̃ (i)(xj− 1

2
+ 0, yk) = q

(i)
j,k −

∆x

2
(q(i)

x )j,k,

(q(i))N
j,k := q̃ (i)(xj, yk+ 1

2
− 0) = q

(i)
j,k +

∆y

2
(q(i)

y )j,k,

(q(i))S
j,k := q̃ (i)(xj, yk− 1

2
+ 0) = q

(i)
j,k −

∆y

2
(q(i)

y )j,k,

i = 1, 2, 3,

where the slopes (q
(i)
x )j,k and (q

(i)
y )j,k are computed using a nonlinear limiter, for example, the

generalized minmod limiter:

(q(i)
x )j,k = minmod

(
θ
q

(i)
j+1,k −q

(i)
j,k

∆x
,
q

(i)
j+1,k −q

(i)
j−1,k

2∆x
, θ
q

(i)
j,k −q

(i)
j−1,k

∆x

)
,

(q(i)
y )

j,k
= minmod

(
θ
q

(i)
j,k+1 −q

(i)
j,k

∆y
,
q

(i)
j,k+1 −q

(i)
j,k−1

2∆y
, θ
q

(i)
j,k −q

(i)
j,k−1

∆y

)
,

i = 1, 2, 3.

We then estimate the one-sided local speeds of propagation in the x- and y- directions,
respectively, using the smallest and largest eigenvalues of the Jacobians ∂F

∂q
and ∂G

∂q
:

a+
j+ 1

2
,k

= max
(
uE
j,k + cE

j,k, u
W
j+1,k + cW

j+1,k, 0
)
, a−

j+ 1
2
,k

= min
(
uE
j,k − cE

j,k, u
W
j+1,k − cW

j+1,k, 0
)
,

b+
j,k+ 1

2

= max
(
vN
j,k + cN

j,k, v
S
j,k+1 + cS

j,k+1, 0
)
, b−

j,k+ 1
2

= min
(
vN
j,k − cN

j,k, v
S
j,k+1 − cS

j,k+1, 0
)
,

where the velocities uE
j,k, u

W
j+1,k, v

N
j,k and vS

j,k+1 are obtained from the identities u ≡ (ρu)/ρ and
v ≡ (ρv)/ρ and the speeds of sound cE

j,k, c
W
j+1,k, c

N
j,k and cS

j,k+1 are computed from the definition
c2 = γp/ρ.

The calculation of the point values for the forth conservative variable E requires a special
treatment, which is different in the horizontal (x) and vertical (y) directions.

In the x-direction, we first compute the point values of p at the cell centers using the EOS
(1.5):

pj,k = (γ − 1)

(
Ej,k −

(ρu)2
j,k + (ρv)2

j,k

2ρj,k

)
,

and then compute the cell interface values of p using a nonlinear limiter, for example, the
generalized minmod one:

pE
j,k = pj,k +

∆x

2
(px)j,k, pW

j,k = pj,k −
∆x

2
(px)j,k,
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where

(px)j,k = minmod

(
θ
pj+1,k − pj,k

∆x
,
pj+1,k − pj−1,k

2∆x
, θ

pj,k − pj−1,k

∆x

)
.

Equipped with these values, we then compute the required cell interface values of E:

EE
j,k =

pE
j,k

γ − 1
+
ρE
j,k

2

((
uE
j,k

)2
+
(
vE
j,k

)2
)
, EW

j,k =
pW
j,k

γ − 1
+
ρW
j,k

2

((
uW
j,k

)2
+
(
vW
j,k

)2
)
.

Remark 3.1 As an alternative approach, one can compute the point values EE
j,k and EW

j,k using
a piecewise linear reconstruction of the conservative variable E rather than p and still obtain a
well-balanced reconstruction. However, our numerical experiments (not reported in this paper
for the sake of brevity) indicate that reconstructing E in the x-direction leads to the loss of
symmetry in the computed solution.

In the y-direction, we follow the same idea as in the 1-D case. First, we compute the values
of R at the cell interfaces and cell centers in a complete analogy with (2.12):

Rj,kL− 1
2

= 0,


Rj,k+ 1

2
= Rj,k− 1

2
+ g∆yρj,k,

Rj,k = Rj,k− 1
2

+
g∆y

2
ρj,k −

g(∆y)2

8
(ρy)j,k,

j = jL, . . . , jR, k = kL, . . . , kR.

We then compute wj,k as follows:

wj,k = pj,k +Rj,k.

Next, reconstructing w in the y-direction yields

wN
j,k = wj,k +

∆y

2
(wy)j,k, wS

j,k = wj,k −
∆y

2
(wy)j,k,

where

(wy)j,k = minmod

(
θ
wj,k+1 − wj,k

∆y
,
wj,k+1 − wj,k−1

2∆y
, θ

wj,k − wj,k−1

∆y

)
.

Finally, the obtained point values of w are used to evaluate the corresponding point values p
from (3.2):

pN
j,k = wN

j,k −Rj,k+ 1
2
, pS

j,k = wS
j,k −Rj,k− 1

2
,

and E from (1.5):

EN
j,k =

pN
j,k

γ − 1
+

(
(ρu)N

j,k

)2
+
(
(ρv)N

j,k

)2

2ρN
j,k

, ES
j,k =

pS
j,k

γ − 1
+

(
(ρu)S

j,k

)2
+
(
(ρv)S

j,k

)2

2ρS
j,k

.

3.1.2 Well-Balanced Evolution

The cell-averages of q are evolved in time according to the following system of ODEs:

d

dt
qj,k = −

F j+ 1
2
,k −F j− 1

2
,k

∆x
−

Gj,k+ 1
2
− Gj,k− 1

2

∆y
+Sj,k. (3.5)
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Here, F and G are numerical fluxes. Introducing the notations

αj+ 1
2
,k :=

a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

and βj,k+ 1
2

:=
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

,

we write the components of F and G as

F (1)

j+ 1
2
,k

=
a+
j+ 1

2
,k

(ρu)E
j,k − a−j+ 1

2
,k

(ρu)W
j+1,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+αj+ 1
2
,kH

(
|wj+1,k − wj,k|

∆x
·
xkR+ 1

2
− xkL− 1

2

maxj,k{wj,k}

)(
ρW
j+1,k − ρE

j,k

)
,

F (2)

j+ 1
2
,k

=
a+
j+ 1

2
,k

(
ρE
j,k(uE

j,k)2 + pE
j,k

)
− a−

j+ 1
2
,k

(ρW
j+1,k(uW

j+1,k)2 + pW
j+1,k)

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+αj+ 1
2
,k

(
(ρu)W

j+1,k − (ρu)E
j,k

)
,

F (3)

j+ 1
2
,k

=
a+
j+ 1

2
,k
ρE
j,ku

E
j,kv

E
j,k − a−j+ 1

2
,k
ρW
j+1,ku

W
j+1,kv

W
j+1,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+ αj+ 1
2
,k

(
(ρv)W

j+1,k − (ρv)E
j,k

)
,

F (4)

j+ 1
2
,k

=
a+
j+ 1

2
,k
uE
j,k(EE

j,k + pE
j,k)− a−

j+ 1
2
,k
uW
j+1,k(EW

j+1,k + pW
j+1,k)

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+ αj+ 1
2
,k

(
EW

j+1,k − EE
j,k

)
,

G(1)

j,k+ 1
2

=
b+
j,k+ 1

2

(ρv)N
j,k − b−j,k+ 1

2

(ρv)S
j,k+1

b+
j,k+ 1

2

− b−
j,k+ 1

2

+ βj,k+ 1
2
H

(
|wj,k+1 − wj,k|

∆y
·
ykR+ 1

2
− ykL− 1

2

maxj,k{wj,k}

)(
ρS
j,k+1 − ρN

j,k

)
,

G(2)

j,k+ 1
2

=
b+
j,k+ 1

2

ρN
j,ku

N
j,kv

N
j,k − b−j,k+ 1

2

ρS
j,k+1u

S
j,k+1v

S
j,k+1

b+
j,k+ 1

2

− b−
j,k+ 1

2

+ βj,k+ 1
2

(
(ρu)S

j,k+1 − (ρu)N
j,k

)
,

G(3)

j,k+ 1
2

=
b+
j,k+ 1

2

(
ρN
j,k(vN

j,k)2 + wN
j,k

)
− b−

j,k+ 1
2

(
ρS
j,k+1(vS

j,k+1)2 + wS
j,k+1

)
b+
j,k+ 1

2

− b−
j,k+ 1

2

+ βj,k+ 1
2

(
(ρv)S

j,k+1 − (ρv)N
j,k

)
,

G(4)

j,k+ 1
2

=
b+
j,k+ 1

2

vN
j,k(EN

j,k + pN
j,k)− b−

j,k+ 1
2

vS
j,k+1(ES

j,k+1 + pS
j,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+ βj,k+ 1
2

(
ES

j,k+1 − EN
j,k

)
,

where the function H in the first components of the x and y numerical fluxes is as before defined
in (2.17). The cell averages of the source term in (3.5) are approximated using the midpoint
quadrature rule as follows:

Sj,k = (0, 0, 0,−g(ρv)j,k)T .

Finally, we state the following well-balanced property of the proposed 2-D CU scheme.
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Theorem 3.1 The 2-D semi-discrete CU scheme described in §3.1.1 and §3.1.2 above is well-
balanced in the sense that it preserves the steady state (1.11).

Proof: The proof is similar to the proof of Theorem 2.1. �

4 Numerical Examples

In this section, we present a number of 1-D and 2-D numerical examples, in which we demon-
strate the performance of the proposed well-balanced semi-discrete CU scheme.

In all of the examples below, we have used a third-order strong stability preserving (SSP)
Runge-Kutta method (see, e.g., [12, 13, 32]) to solve the ODE systems (2.13) and (3.5). The
CFL number has been set to 0.4. Also, we have used the following constant values: the minmod
parameter θ = 1.3 and the specific heat ratio γ = 1.4.

4.1 One-Dimensional Examples

Example 1—Shock Tube Problem. The first example is a modification of the Sod shock
tube problem taken from [26, 36]. We solve the 1-D system (1.6), (1.7) with g = 1 in the
computational domain [0, 1] using the following initial data:

(ρ(y, 0), v(y, 0), p(y, 0)) =

{
(1, 0, 1), if y ≤ 0.5,

(0.125, 0, 0.1), if y > 0.5,

and reflecting boundary conditions at the both ends of the computational domain. These
boundary conditions are implemented using the ghost cell technique as follows:

ρkL−1 := ρkL , vkL−1 := −vkL , wkL−1 := wkL ,

ρkR+1 := ρkR , vkR+1 := −vkR , wkR+1 := wkR ,

where N := kR − kL + 1 is a total number of grid cells.
We compute the solution using N = 100 uniformly placed grid cells and compare it with the

reference solution obtained using N = 2000 uniform cells. In Figure 4.1, we plot both the coarse
and fine grid solutions at time T = 0.2. As one can see, the proposed CU scheme captures the
solutions on coarse mesh quite well showing a good agreement with both the reference solution
and the results obtained in [26,36].

Example 2—Isothermal Equilibrium Solution. In the second example, taken from [36]
(see also [24,26,34]), we test the ability of the proposed CU scheme to accurately capture small
perturbations of the steady state

ρ(y) = e−y, v(y) ≡ 0, p(y) = ge−y, (4.1)

which satisfies (1.10).
We take the computational domain [0, 1] and use a zero-order extrapolation at the bound-

aries:
ρkL−1 := ρkL , vkL−1 := vkL , wkL−1 := wkL ,

ρkR+1 := ρkR , vkR+1 := vkR , wkR+1 := wkR .
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Figure 4.1: Example 1: Solution (ρ(y, 0.2), v(y, 0.2), E(y, 0.2) and p(y, 0.2)) computed using
N = 100 and N = 2000 cells.

Note that the boundary conditions on w can be recast in terms of p and ρ as

pkL−1 = pkL + g∆yρkL , pkR+1 = pkR − g∆yρkR .

We first numerically verify the well-balanced property of the proposed CU scheme by solving
the 1-D system (1.6), (1.7) with g = 1 subject to the initial conditions corresponding to the
steady state (4.1). We use several uniform grids and observe that the initial conditions are
preserved within the machine accuracy.

Next, we introduce a small initial pressure perturbation and consider the system (1.6), (1.7)
subject to the following initial data:

ρ(y, 0) = e−y, v(y, 0) ≡ 0, p(y, 0) = ge−y + ηe−100(y−0.5)2 ,

where η is a small positive number. In the numerical experiments, we use larger (η = 10−2)
and smaller (η = 10−4) perturbations.

We first apply the proposed well-balanced CU scheme to this problem and compute the
solution at time T = 0.25. The obtained pressure perturbation (p(y, 0.25) − ge−y) computed
using N = 200 and N = 2000 (reference solution) uniform grid cells are plotted in Figure 4.2
for both η = 10−2 and η = 10−4. As one can see, the scheme accurately captures both small
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and large perturbations on a relatively coarse mesh with N = 200. In order to demonstrate the
importance of the well-balanced property, we apply the non-well-balanced CU scheme described
in §2.1 to the same initial-boundary value problem. The obtained results are shown in Figure 4.2
as well. It should be observed that while the larger perturbation is quite accurately computed
by both schemes, the non-well-balanced CU scheme fails to capture the smaller one.
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Figure 4.2: Example 2: Pressure perturbation (p(y, 0.25) − ge−y) computed by the well-balanced
(WB) and non-well-balanced (Non-WB) CU schemes with N = 200 and N = 2000 for η = 10−2

(left) and η = 10−4 (right).

4.2 Two-Dimensional Examples

Example 3—Isothermal Equilibrium Solution. The first 2-D example was studied in
[36]. We consider the system (3.1), (3.2) with g = 1 subject to the initial data that are in an
isothermal equilibrium:

ρ(x, y, 0) = ρ0e
− ρ0gy

p0 , p(x, y, 0) = p0e
− ρ0gy

p0 , u(x, y, 0) ≡ v(x, y, 0) ≡ 0, (4.2)

where ρ0 = 1.21 and p0 = 1, and the solid wall boundary conditions imposed at the edges of
the unit square [0, 1]× [0, 1].

We compute the solution until the final time T = 1 using the proposed well-balanced CU
scheme on 50× 50, 100× 100 and 200× 200 uniform cells. On all of these grids, the initial data
are preserved within the machine accuracy. On contrary, the non-well-balanced CU scheme
preserves the initial equilibrium within the accuracy of the scheme only, as can be seen in Table
4.1, where we present the L1-errors for both ρ, ρu, ρv and E components of the non-well-
balanced solution.

Next, we add a small perturbation to the initial pressure (compare with (4.2)):

p(x, y, 0) = p0e
− ρ0gy

p0 + ηe
− 100ρ0g

p0
((x−0.3)2+(y−0.3)2), η = 10−3.

In Figures 4.3 and 4.4 (upper row), we plot the pressure computed by both the well-balanced
and non-well-balanced CU schemes at time T = 0.15 using 50 × 50 uniform cells. As one can
clearly see, the well-balanced CU scheme can capture the small pressure perturbation much
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N ×N ρ ρu ρv E

50 × 50 1.05E-03 0.00E+00 5.72E-05 9.61E-05

100 × 100 4.02E-04 0.00E+00 2.07E-05 4.10E-05

200 × 200 1.63E-04 0.00E+00 7.11E-06 1.57E-05

Table 4.1: Example 3: L1-errors for the non-well-balanced CU scheme.

more accurately than the non-well-balanced one. When the mesh is refined to 200 × 200
uniform cells, the non-well-balanced solution becomes better, but still less accurate than the
well-balanced one, see Figure 4.4 (lower row).

Figure 4.3: Example 3: Pressure perturbation computed by the well-balanced (left) and non-well-
balanced (right) CU schemes using 50× 50 uniform cells.

Example 4—Explosion. In the second 2-D example, we compare the performance of well-
balanced and non-well-balanced CU schemes in an explosion setting and demonstrate nonphys-
ical shock waves generated by non-well-balanced scheme.

We solve the system (3.1), (3.2) with g = 0.118 in the computational domain [0, 3]× [0, 3],
subject to the following initial data:

ρ(x, y, 0) ≡ 1, u(x, y, 0) ≡ 0, p(x, y, 0) = 1− gy +

{
0.005, (x− 1.5)2 + (y − 1.5)2 < 0.01,

0, otherwise.

Zero-order extrapolation is used as the boundary conditions in all of the directions.

We use a uniform grid with 101 × 101 cells and compute the solution by both the well-
balanced and non-well-balanced CU schemes until the final time T = 2.4. At first, a circular
shock wave is developed and later on it transmits through the boundary. Due to the heat
generated by the explosion, the gas at the center expands and its density decreases generating
a positive vertical momentum at the center of the domain. In Figures 4.5 and 4.6, we plot the
solution (ρ and

√
u2 + v2 at times t = 1.2, 1.8 and 2.4) computed by the well-balanced and

non-well-balanced schemes, respectively. As one can see, the well-balanced scheme accurately
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Figure 4.4: Example 3: Contour plot of the pressure perturbation computed by well-balanced (left
column) and non-well-balanced (right column) CU schemes using 50×50 (upper row) and 200×200
(lower row) uniform cells.

captures the behavior of the solution at all stages, while the non-well-balanced scheme pro-
duces significant oscillations at the smaller time t = 1.2, which totally dominate the solution,
especially its velocity field, by the final time T = 2.4.
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