LES Applications in Aerodynamics

Kyle D. Squires

School of Mechanical, Aerospace, Chemical and Materials Engineering Arizona State University Tempe, Arizona, USA

2010 Tutorial School on Fluid Dynamics: Topics in Turbulence Center for Scientific Computation and Mathematical Modeling University of Maryland May 27, 2010

Outline

Subgrid-scale models

- Length scales in LES subgrid models vs. length scales in RANS models
 - » Reminder of a key difference between the techniques
- Challenges for whole-domain LES in aerodynamics applications
 - Resolving the boundary layer at high Reynolds numbers

Formulation of hybrid RANS-LES models

Detached Eddy Simulation

Applications

• Massively separated flows - from simple geometries to complex geometries

Improvements and newer developments

Motivation for modeling...

 Engineering models are meant to bypass the complex details of turbulent flows and predict the statistical features

DNS at Re = 110,000

DES at Re = 110,000

Modeling turbulent flows...

 By far the most widely used approach to model turbulent flows in applications is based on the introduction of an eddy viscosity...

$$\overline{u_i'u_j'} \approx \nu_t \Big[\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i}\Big]$$

 $\nu_t = \text{turbulent eddy viscosity}$

Objective of vast majority of engineering models is to predict the eddy viscosity in order to integrate the RANS equations

Eddy viscosity...

- Assumes that the turbulent eddies in a flow transfer momentum in much the same fashion as molecular interactions in a gas
 - Molecular interactions occur at much smaller scales as compared to the length scales over which flow properties are changing
 - Turbulent eddies have interactions at scales comparable to the length scales of the mean motion of the flow
- Mixing length characterizes (roughly) the distance traveled by an eddy before it gives up its momentum and loses identity

A simple idea...

Assume equilibrium...

Combining the above relations...

$$\nu_t \varepsilon \approx \nu_t \left(-\overline{u'v'} \frac{dU}{dy} \right) = (\overline{u'v'})^2$$
$$\nu_t = \frac{(\overline{u'v'})^2}{\varepsilon}$$

A simple idea...

- To go further we need some knowledge of the flow
 - Let's assume that the ratio of the shear stress to the kinetic energy takes a constant value

$$\frac{\overline{u'v'}}{\mathcal{K}} \approx C$$

• We had...

$$\nu_t = \frac{(\overline{u'v'})^2}{\varepsilon}$$

Now we have...

Important parts of the previous exercise...

 Expressed the eddy viscosity in terms of a velocity scale and length scale as...

$$\nu_t = \mathcal{U} \, l_m$$

 $\mathcal{U} =$ velocity scale $l_m =$ mixing length

- The eddy viscosity depends on a velocity and a length scale that are properties of the flow
- Popular RANS turbulence models solve transport equations for the velocity and length scales or other variables that can be used to form the eddy viscosity
 - Spalart-Allmaras (S-A) one-equation model
 - Menter's SST model (two-equation model)

Spalart-Allmaras one-equation model

$$\frac{D\tilde{\nu}}{Dt} = c_{b1}(1 - f_{t2})\tilde{S}\tilde{\nu} + \frac{1}{\sigma} \Big[\nabla \cdot ((\nu + \tilde{\nu})\nabla\tilde{\nu}) + c_{b2}(\nabla\tilde{\nu})^2\Big] - \Big[c_{w1}f_w - \frac{c_{b1}}{\kappa^2}f_{t2}\Big]\Big[\frac{\tilde{\nu}}{d}\Big]^2 + f_{t1}\Delta U^2$$

Full model contains trip terms that enable activation of the model...

$$f_{t1} = c_{t1}g_t \exp\left(-c_{t2}\frac{\omega_t^2}{\Delta U^2} \left[d^2 + g_t^2 d_t^2\right]\right) \qquad g_t = \min\left(0.1, \frac{\Delta U}{\omega_t \Delta x_t}\right)$$
$$f_{t2} = c_{t3} \exp\left(-c_{t4}\chi^2\right)$$

RANS models...

- Where are the problems?
 - Bluff bodies...
 - » Characterized by chaotic vortex shedding
 - » Unless the geometry has sharp edges, separation prediction can be difficult
 - Even two-dimensional bluff bodies are sufficient to cause simple models to fail, even configurations with sharp corners that set the separation location

Flow over a cylinder by Strelets group (laminar boundary layer separation) Drag coefficient is too low compared to measurements, S-A model

URANS of a cylinder...

Re = 50k, laminar separation, S-A model (Strelets group)

Steady RANS Drag is too low URANS

Unsteady RANS Drag is too high

- Time dependent large scale motions are resolved on a grid
 - Small scale turbulence that cannot be resolved is modeled
- The governing equations are filtered...

$$\frac{\partial \overline{u}_i}{\partial t} + \frac{\partial}{\partial x_j} (\overline{u}_i \overline{u}_j) = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \nu \frac{\partial^2 \overline{u}_i}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}$$
$$\tau_{ij} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j$$
$$\tau_{ij} - \frac{\delta_{ij}}{3} \tau_{kk} = -2\nu_{sgs} \overline{S}_{ij} = -\nu_{sgs} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right)$$

- Looks like the RANS equations
 - But there are important differences...

Subgrid viscosity in LES...

$$\nu_{sgs} = (C_s \Delta)^2 |\overline{S}| \qquad |\overline{S}| = (2\overline{S}_{ij}\overline{S}_{ij})^{1/2}$$

Eddy viscosity in RANS...

$$\nu_t = 0.09 \frac{\kappa^2}{\varepsilon}$$
 $\mathcal{K} = \text{kinetic energy}$
 $\varepsilon = \text{dissipation rate}$

- Length scale in the LES subgrid model is typically coupled to the grid (through the filter width)
- Length scale in the RANS model is a property of the flow and computed from model equations

Role of grid refinement is different Grid convergence in RANS

More physics in LES

Re = 50k, laminar separation, S-A-based DES (Strelets group) SRANS DES (coarse grid)

URANS

- Very powerful technique...
 - Access to three-dimensional time-dependent description of a flow
 - Relatively simple models possible
 - Predictions less sensitive to modeling errors than RANS
- How much does it cost?
 - (roughly) estimate the grid resolution need to apply LES to prediction of the flow over a section of a wing (Spalart et al. 1997)...
 - » Consider a section 1 m² (chord length of a 1 meter, spanwise section 1 meter)
 - > Objective is to estimate the number of cubes of size δ (per side) needed to fill the boundary layer

$$N_{cubes} = \int \int \frac{1}{\delta^2} dA$$

$$N_{cubes} = \int \int \frac{1}{\delta^2} dA$$

 Rough estimate for N_{cubes} obtained using a simple correlation for a flat plate boundary layer

$$\delta(x) = 0.37x \left(\frac{U_{\infty}x}{\nu}\right)^{-0.2}$$

Consider a chord-based Reynolds number of 2 x 10⁶

$$N_{cubes} = \int \int \frac{1}{\delta^2} dA \approx 9 \times 10^6$$

$$N_{cubes} = \int \int \frac{1}{\delta^2} dA \approx 9 \times 10^6$$

- Above estimate is the number of cubes of dimension δ needed to fill the boundary layer over the wing
- Number of grid points dictated by the resolution per boundary layer thickness
 - Assume the wall-layer is modeled (not resolved)
 - Let N_0 be the number of grid points per boundary layer thickness
 - » N₀: 10 points per boundary layer thickness is minimum
 - » N₀: 15-20 points per boundary layer thickness desirable (Nikitin et al. 2000)

$$N_g = N_0^3 N_{cubes}$$

$$N_g = N_0^3 N_{cubes}$$

• For $N_0 = 20...$

$$N_g = 7 \times 10^{10}$$

- Timestep that is required coupled to the grid spacing...(so we'll need a lot of timesteps)
- Above estimate assumes the wall-layer is modeled (hopefully accurately)
 - Direct resolution of the wall layer will make the cost higher

Outline

Subgrid-scale models

- Length scales in LES subgrid models vs. length scales in RANS models
 - » Reminder of a key difference between the techniques
- Challenges for whole-domain LES in aerodynamics applications
 - Resolving the boundary layer at high Reynolds numbers
- Formulation of hybrid RANS-LES models
 - Detached Eddy Simulation

Applications

• Massively separated flows - from simple geometries to complex geometries

Improvements and newer developments

Detached Eddy Simulation (DES)

- Motivation...
 - Desire for a simulation strategy that combines the efficiency of RANS and the fidelity of LES
 - » Circumvent the modeling errors in RANS methods in massively separated flows
 - » Avoid the computational cost of whole-domain LES at high Reynolds numbers
- Proposed in 1997 by Spalart and colleagues
 - Develop a single simulation strategy that exhibits different ("hybrid") behavior

Definition: "A Detached-Eddy Simulation is three-dimensional numerical solution using a single turbulence model, which functions as a sub-grid-scale model in regions where the grid is fine enough for a Large-Eddy Simulation and as a Reynolds-averaged model in regions where it is not." (Travin et al. 2000)

Formulation of S-A DES

S-A RANS model

Production and destruction terms...

$$P_{\nu} \propto \widetilde{S}\widetilde{
u} \qquad \epsilon_{
u} \propto \left[\frac{
u}{d}\right]^2$$

• Replace the length scale...

(wall distance) $d \rightarrow \tilde{d}$

Formulation of DES...

Balance the production and destruction terms...

$$P_{\nu} \approx \epsilon_{\nu} \longrightarrow \widetilde{S}\widetilde{\nu} = \left[\frac{\widetilde{\nu}}{\widetilde{d}}\right]^2$$

Leads to...

$$\widetilde{\nu} \propto \widetilde{d}^2 \widetilde{S}$$

Smagorinsky eddy viscosity...

$$\nu_{sgs} = (C_s \Delta)^2 |\overline{S}|$$

• Can obtain a Smagorinsky eddy viscosity if the length scale is made proportional to Δ

Formulation of DES...

Prescription of the length scale...

$$\widetilde{d} \equiv min(d, C_{DES}\Delta)$$

- High cost of LES arises because of resolution requirements in the boundary layer
 - Prescribe Δ such that RANS length scale maintained in the boundary layer

$$\Delta \equiv \max(\Delta x, \Delta y, \Delta z)$$

• Close to the wall Δ is set by the wall parallel spacings

$$d \ll \Delta$$
, $\widetilde{d} = d$, RANS

Away from the wall...

$$C_{DES}\Delta < d\,, \quad \widetilde{d} = C_{DES}\Delta\,, \quad \text{LES}$$

Calibration of the constant C_{DES}

Decaying isotropic turbulence (Shur et al. 1999)

- Computations for various values of C_{DES}
 - Examined the behavior of the kinetic energy and spectral shape near the cutoff
 - Found scaling of the average eddy viscosity close to $\Delta^{4/3}$

$$C_{DES} = 0.65$$

Aspects of the formulation...

$$\frac{D\tilde{\nu}}{Dt} = c_{b1}\tilde{S}\tilde{\nu} + \text{diffusion} - c_{w1}f_w \left[\frac{\tilde{\nu}}{\tilde{d}}\right]^2$$

$$production \qquad destruction$$

$$\tilde{d} = \min(d, C_{DES}\Delta) \qquad \Delta = \max(\Delta_x, \Delta_y, \Delta_z)$$

 $(\Delta_x, \Delta_y, \Delta_z) =$ grid spacings in each direction

- DES is a <u>3D unsteady numerical solution using a single turbulence model</u>
 - Non-zonal
 - » LES in regions where grid density is sufficient
 - » RANS model in other regions
 - Abrupt change in the length scale (discontinuity in the gradient)
 - "RANS Region" and "LES Region" separated by an interface dictated by the grid

Outline

Subgrid-scale models

- Length scales in LES subgrid models vs. length scales in RANS models
 - » Reminder of a key difference between the techniques
- Challenges for whole-domain LES in aerodynamics applications
 - Resolving the boundary layer at high Reynolds numbers
- Formulation of hybrid RANS-LES models
 - Detached Eddy Simulation

Applications

• Massively separated flows - from simple geometries to complex geometries

Improvements and newer developments

Flow over an airfoil at high angle of attack

Shur et al. (1999)

- First application of DES following launch of the model in 1997
- Motivation
 - URANS errors of about 40% in drag and lift coefficients
- Flow configuration
 - NACA 0012 airfoil with spanwise extent equal to the chord length
 - Structured 'O' grid with 141 x 65 x 40 grid points in the streamwise, wall-normal and spanwise directions respectively.
 - Fully turbulent predictions
 - RANS-LES interface at 0.026C
 - » Set by the spanwise spacing
 - Reynolds number based on chord length = 10^5

Objectives: would it work?

141 x 65 x 25 grid

Shur et al. (1999)

Pressure coefficient

Travin et al. (1999)

- Comprehensive study and assessment of the technique
- Reynolds numbers...
 - $5x10^4$, 1.4 $x10^5$ and $3x10^6$
- Cylinder known for its drag crisis...
 - Disparity in laminar and turbulent boundary layer separation
 - » Laminar boundary layer separation: turbulence model should remain dormant (mimic'd using tripless approach)
 - » Turbulent boundary layer separation: turbulence model controls separation prediction
- Absence of sharp edges on the surface of the cylinder make it a good test to detect "grey area" failures

Will the generation of three-dimensional structures occur rapidly?

Domain

Multiblock grids (Inner block 150 x 36, wake block 74 x 36, outer block 59 x 30. The three blocks meet near x=1.06, y=1.03

- Grid refinement by a factor of $\sqrt{2}$ in each direction
- Spanwise extent = 2D

Laminar separation - vorticity isosurfaces

Laminar separation – time dependent forces

Turbulent separation - time dependent forces

Laminar separation – pressure coefficient

Aircraft forebody

- Rectangular ogive forebody
 - Aft section length = 4D
 - » Cross-section: square with rounded corners, corner radius = D/4
 - Forebody length = 2D
 - Angle of attack: 60° and 90°
- Simulation details (Viswanathan, Squires and Forsythe 2006)
 - Grid sizes from 2.1 x 10⁶ cells to 8.75 x 10⁶ cells
 - » Unstructured (generated using VGRIDns, Pirzadeh 1996)
 - Re = 2.21 x 10⁶, Mach number = 0.21

forebody cross section

Role of grid refinement and turbulence model

vorticity contours in the wake, y/D = 1.0, 90^{\pm} angle of attack

 $DES-coarse grid (2.1 \times 10^6 cells)$

DES – fine grid (8.8x10⁶ cells)

RANS – baseline grid (6.5x10⁶ cells)

Planar cuts of eddy viscosity, $\alpha = 90^{\circ}$

surface colored by pressure

Azimuthal Pressure Distribution

Azimuthal Pressure Distribution

Azimuthal Pressure Distribution

F-15E at 65 Degrees Angle of Attack

- Re = 13.6 x 10⁶, M = 0.3
- Stability and control database provided by Boeing Military Aircraft for assessing DES predictions
 - Data at 65° and 74° AOA
- Simulation details (Forsythe et al. 2003)
 - Unstructured grids
 - » 4 x 10⁶, 6 x 10⁶, 10 x 10⁶ cells
 - » Resolved wall layer
 - Timestep variation of 0.01, 0.02, and 0.04 (dimensionless using chord and freestream speed)

Mechanical, Aerospace, Cnemical and Materials Engineering

Surface grids

Instantaneous vorticity field

F-15E at 65° angle of attack

Forsythe, Squires, Wurtzler and Spalart (2004)

Influence of mesh and model on wing pressure coefficient

Applications – F-18C at 30 Degrees Angle of Attack

- Re = 13.9 x 10⁶, M = 0.28
 - Leading Edge Extension used to increase lift, twin tails canted for increased maneuverability
 - Tail buffet at large incidence due to vortex breakdown
- Simulation details
 - Baseline mesh of 5.9 x 10⁶ cells
 - Adaptive Mesh Refinement (Pirzadeh 2000)
 - » Solution-based adaption to 6.2 x 10⁶ cells
 - Comparison of DES to S-A RANS/URANS

Morton, Steenman, Cummings and Forsythe (2003)

Vorticity Isosurface

Morton, Steenman, Cummings and Forsythe (2004)

Baseline Grid, S-A DES

AMR Grid, S-A DES

School of Mechanical, Aerospace, Chemical and Materials Engineering

Schools g Engineering

Instantaneous Vorticity Field

F-18C at 30° angle of attack

Morton, Steenman, Cummings and Forsythe (2004)

Streamwise LEX vortex breakdown position

Schools of Engineering

Figure from NASATION AND Magarials Engineering

Outline

Subgrid-scale models

- Length scales in LES subgrid models vs. length scales in RANS models
 - » Reminder of a key difference between the techniques
- Challenges for whole-domain LES in aerodynamics applications
 - Resolving the boundary layer at high Reynolds numbers
- Formulation of hybrid RANS-LES models
 - Detached Eddy Simulation

Applications

- Massively separated flows from simple geometries to complex geometries
- Improvements and newer developments

Original formulation of DES ("DES97")

$$\frac{D\widetilde{\nu}}{Dt} = c_{b1}\widetilde{S}\widetilde{\nu} + \text{diffusion} - c_{w1}f_w \left[\frac{\widetilde{\nu}}{\widetilde{d}}\right]^2$$
production
destruction

 $\widetilde{d} = \min(d_w, C_{DES}\Delta)$

- Turbulent stress in the RANS region is completely modeled
- Modeled Reynolds stress decreases in the LES region
 - Resolved Reynolds stress (due to resolved velocity fluctuations) is intended to dominate the total stress in the LES Region
- Location where $d_w = C_{DES} \Delta$ dictates the location of the interface

Background...

- Reduction of model length scale lowers the eddy viscosity
 - Lowers modeled Reynolds stress
 - Requires an increase in <u>resolved</u> Reynolds stress
 - » Generation of three-dimensional structure ("eddy content") in a separating shear layer
 - > Straightforward in massive separations
 - > What about other flow regimes?
- Issues...
 - Grid spacing fine enough to reduce model length scale and identify "LES region" within the domain
 - » Resolved Reynolds stresses derived from 3D structure have not yet replaced modeled stress
 - > Results from insufficient grid resolution and/or
 - Delay in generation of resolved stress by instabilities in the flow
 - » Initiated in boundary layers

Types of grids...

Type I grid - Typical of RANS and DES with a thin boundary layer

Wall-parallel grid spacings are comparable to the boundary layer thickness

Type III grid – capable of wallmodeled LES

Wall-parallel grid spacings are a fraction of the boundary layer thickness

Types of grids...

Type II grid – Ambiguous

Wall-parallel grid spacings are fine enough to locate the RANS-LES interface within the boundary layer though insufficient to resolve turbulent fluctuations

Role of the mesh

- Grid spacing fine enough to activate the "LES region" in the boundary layer
 - RANS eddy viscosity will be reduced, lower modeled stress
 - Resolved Reynolds stresses derived from 3D structure may not have yet replaced modeled stress
 - » Results from insufficient grid resolution and/or thickened boundary layer

Need to address "ambiguous grids"

DES97 prediction of streamlines over an Aerospatiale-A airfoil at 13.3 degrees angle of attack, $Re = 2 \times 10^6$

- Example of an "ambiguous grid"
 - · Can result in separation induced by the grid
- For applications in attached boundary layers
 - Preferable to over-ride length scale switch and maintain RANS behavior regardless the boundary layer grid density

Objective is formulation of DES that is resistant to ambiguous grids

Modification of the DES length scale

- Incorporation of information from the solution field into the length scale \widetilde{d}
 - Similar idea to F₂ used by Menter and Kuntz (2004) in SST-DES

$$r_d = \frac{\nu_t + \nu}{S_d \kappa^2 d_w^2}$$

 $\nu_t = eddy viscosity$ $S_d = velocity gradients$ $d_w = wall distance$

• Use of r_d in a function that "shields" the boundary layer:

 $f_d = 1 - \tanh\left[(Cr_d)^n\right]$

- "C" and "n" control thickness and sharpness of $\rm f_a$

» Optimized values
$$C = 8$$
, $n = 3$

DES formulation resistant to ambiguous grids

Delayed Detached Eddy Simulation

$$\frac{D\tilde{\nu}}{Dt} = c_{b1}\tilde{S}\tilde{\nu} + \text{diffusion} - c_{w1}f_w \left[\frac{\tilde{\nu}}{\tilde{d}}\right]^2$$

$$\widetilde{d} = d_w - f_d \max\{d_w - C_{DES}\Delta, 0\}$$

Limits:

$$f_d = 0 \rightarrow \mathsf{RANS}$$
 $f_d = 1 \rightarrow \mathsf{DES97}$

 DDES obtained for most other RANS models by multiplying by f_d the term that constitutes the difference between RANS and DES

Spalart, Deck, Shur, Squires, Strelets, Travin (2006)

DDES response as wall-modeled LES

- Application to fully-developed channel flow
 - Re_{τ} = 5000, domain $2\pi\delta \times 2\delta \times \pi\delta$
 - » Coarse grid...

$$\Delta_x = \Delta_z = 0.10\delta$$
, $65 \times 75 \times 33$ points

» Fine grid...

$$\Delta_x = \Delta_z = 0.05\delta, \quad 129 \times 129 \times 65 \text{ points}$$

- Aims...
 - » Comparison to DES97
 - » Assess the response of the technique to the grid

Mean velocity: DDES and DES97

Lower skin friction error than in DES97

Length scale and eddy viscosity

DDES and DES97 on the coarse grid

 \widetilde{d}/d

 ν_t/ν

Summary

- DDES version addresses interface errors
 - Incorporates information from the solution field into the length scale definition
 - » Solution field (eddy viscosity) determines the length scale along with the grid spacing and wall distance
 - DDES has become DES as the standard for natural applications and other applications where wall modeling is not the objective

