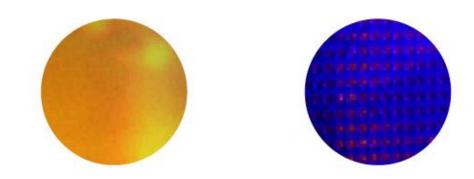
THE A. JAMES CLARK SCHOOL of ENGINEERING

Introduction to Laser Doppler Velocimetry

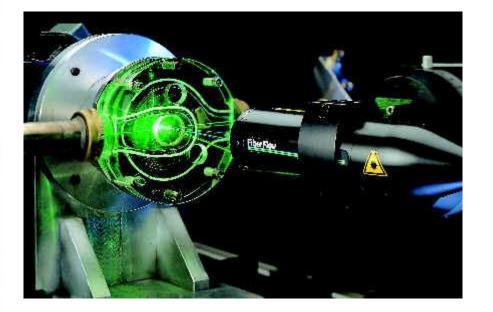


Ken Kiger

Burgers Program For Fluid Dynamics Turbulence School College Park, Maryland, May 24-27

Laser Doppler Anemometry (LDA)

Single-point optical velocimetry method

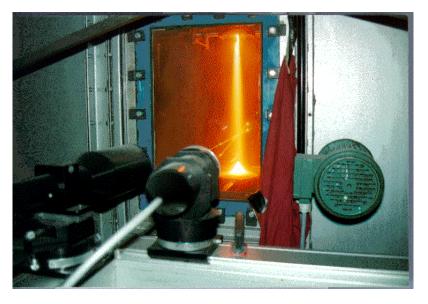


Study of the flow between rotating impeller blades of a pump

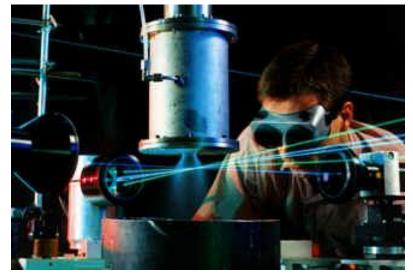
3-D LDA Measurements on a 1:5 Mercedes-Benz E-class model car in wind tunnel

Phase Doppler Anemometry (PDA)

• Single point particle sizing/velocimetry method



Drop Size and Velocity measurements in an atomized Stream of Moleten Metal



Droplet Size Distributions Measured in a Kerosene Spray Produced by a Fuel Injector

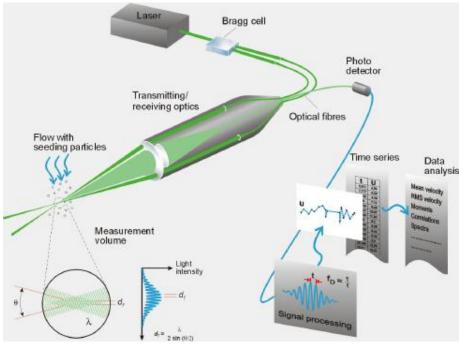
THE A. JAMES CLARK SCHOOL of ENGINEERING

Laser Doppler Anemometry

• LDA

– A high resolution - single point technique for velocity measurements in turbulent flows

A Back Scatter LDA System for One Velocity Component Measurement (Dantec Dynamics)



- Basics

- Seed flow with small tracer particles
- Illuminate flow with one or more coherent, polarized laser beams to form a MV
- Receive scattered light from particles passing through MV and interfere with additional light sources
- Measurement of the resultant light intensity frequency is related to particle velocity

THE A. JAMES CLARK SCHOOL of ENGINEERING

LDA in a nutshell

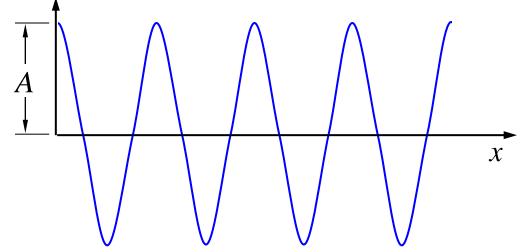
Benefits

- Essentially non-intrusive
- Hostile environments
- Very accurate
- No calibration
- High data rates
- Good spatial & temporal resolution

Limitations

- Expensive equipment
- Flow must be seeded with particles if none naturally exist
- Single point measurement technique
- Can be difficult to collect data very near walls

Review of Wave Characteristics



General wave propagation

$$\psi(\mathbf{x},t) = A\cos\left[2\pi\left(\frac{x}{\lambda} - \frac{t}{\tau}\right)\right] \qquad \psi(\mathbf{x},t) = \operatorname{Re}\left\{Ae^{i[kx - \omega t + \varepsilon]}\right\}$$

- A = Amplitude
- k = wavenumber
- x = spatial coordinate
- t = time
- ω = angular frequency
- ϵ = phase

THE A. JAMES CLARK SCHOOL of ENGINEERING

$$k = \frac{2\pi}{\lambda}$$
 $\tau = \frac{\lambda}{c} \Longrightarrow \omega = \frac{2\pi}{\tau} = \frac{2\pi c}{\lambda}$

Electromagnetic waves: coherence

- Light is emitted in "wavetrains"
 - Short duration, Δt
 - Corresponding phase shift, $\varepsilon(t)$; where ε may vary on scale $t > \Delta t$

$$\mathbf{E} = \mathbf{E}_o \exp\left[i\left(kx - \omega t + \varepsilon(t)\right)\right]$$

- Light is coherent when the phase remains constant for a sufficiently long time
 - Typical duration (Δt_c) and equivalent propagation length (Δl_c) over which some sources remain coherent are:

Source	λ_{nom} (nm)	$\Delta l_{ m c}$
White light	550	8 µm
Mercury Arc	546	0.3 mm
Kr ⁸⁶ discharge lamp	606	0.3 m
Stabilized He-Ne laser	633	\leq 400 m

– Interferometry is only practical with coherent light sources

THE A. JAMES CLARK SCHOOL of ENGINEERING

Electromagnetic waves: irradiance

UNIVERSITY OF MARYLAND

- Instantaneous power density given by Poynting vector
 - Units of Energy/(Area-Time)

$$\mathbf{S} = c^2 \varepsilon_o \mathbf{E} \times \mathbf{B} \qquad \qquad S = c \varepsilon_o E^2$$

• More useful: average over times longer than light freq.

Frequency Range

$$\begin{cases} 6.10 \ge 10^{14} \\ 5.20 \ge 10^{14} \\ I = \langle S \rangle_T = c \varepsilon_o \langle E^2 \rangle_T = \frac{c \varepsilon_o}{2} \mathbf{E} \cdot \mathbf{E}^* = \frac{c \varepsilon_o}{2} E_0^2 \\ \end{cases}$$

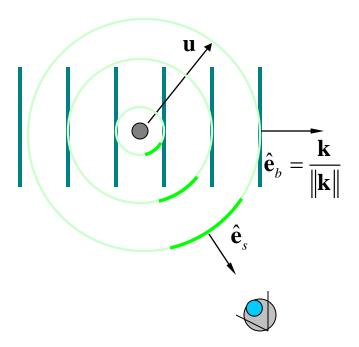
 $3.80 \ge 10^{14}$

THE A. JAMES CLARK SCHOOL of ENGINEERING

LDA: Doppler effect frequency shift

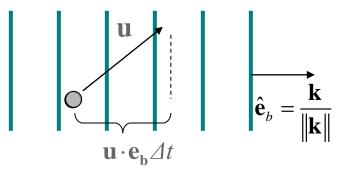
• Overall Doppler shift due two separate changes

- The particle 'sees' a shift in incident light frequency due to particle motion
- Scattered light from particle to stationary detector is shifted due to particle motion



LDA: Doppler shift, effect I

- Frequency Observed by Particle
 - The first shift can itself be split into two effects
 - (a) the number of wavefronts the particle passes in a time *∆t*, as though the waves were stationary...



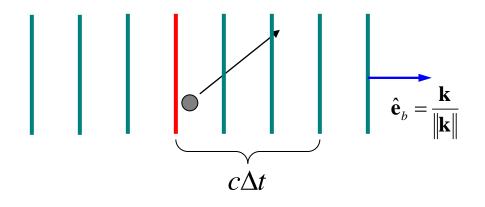
Number of wavefronts particle passes during Δt due to particle velocity:

$$\frac{\mathbf{u} \cdot \hat{\mathbf{e}}_{b} \varDelta t}{\lambda}$$

THE A. JAMES CLARK SCHOOL of ENGINEERING

LDA: Doppler shift, effect I

- Frequency Observed by Particle
 - The first shift can itself be split into two effects
 - (b) the number of wavefronts passing a stationary particle position over the same duration, *∆t*...



Number of wavefronts that pass a stationary particle during Δt due to the wavefront velocity:

$$\frac{c\Delta t}{\lambda}$$

THE A. JAMES CLARK SCHOOL of ENGINEERING

LDA: Doppler shift, effect I

• The net effect due to a moving observer w/ a stationary source is then the difference:

Number of wavefronts that pass a moving particle during Δt due to combined velocity (same as using relative velocity in particle frame):

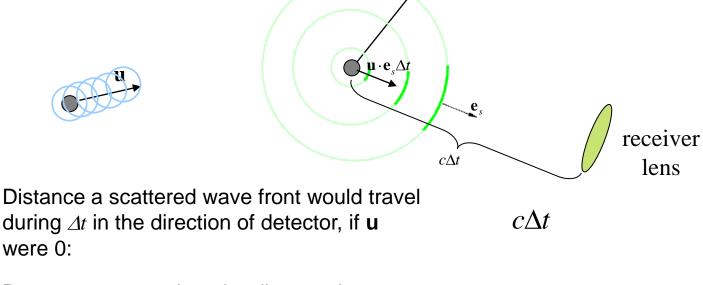
$$\frac{c\Delta t}{\lambda} - \frac{\mathbf{u} \cdot \hat{\mathbf{e}}_{b} \varDelta t}{\lambda}$$

Net frequency observed by moving particle

$$f_{p} = \frac{\# \text{ of wavefront s}}{\Delta t}$$
$$= \frac{c}{\lambda} \left(1 - \frac{\mathbf{u} \cdot \hat{\mathbf{e}}_{b}}{c} \right)$$
$$= f_{0} \left(1 - \frac{\mathbf{u} \cdot \hat{\mathbf{e}}_{b}}{c} \right)$$

LDA: Doppler shift, effect II

- An additional shift happens when the light gets scattered by the particle and is observed by the detector
 - This is the case of a moving source and stationary detector (classic train whistle problem)



Due to source motion, the distance is changed by an amount:

were 0:

$$\mathbf{u} \cdot \hat{\mathbf{e}}_s \Delta t$$

Therefore, the effective scattered wavelength is:

$$\lambda_s = \frac{\text{net distance traveled by wave}}{\text{number of waves emitted}} = \frac{c\Delta t - \mathbf{u} \cdot \hat{\mathbf{e}}_s \Delta t}{f_p \Delta t} = \frac{c - \mathbf{u} \cdot \hat{\mathbf{e}}_s}{f_p}$$

THE A. JAMES CLARK SCHOOL of ENGINEERING

LDA: Doppler shift, I & II combined

• Combining the two effects gives:

$$f_{obs} = \frac{c}{\lambda_s} = \frac{cf_p}{c - \mathbf{u} \cdot \hat{\mathbf{e}}_s} = \frac{f_p}{\left(1 - \frac{\mathbf{u} \cdot \hat{\mathbf{e}}_s}{c}\right)} = f_0 \frac{\left(1 - \frac{\mathbf{u} \cdot \hat{\mathbf{e}}_b}{c}\right)}{\left(1 - \frac{\mathbf{u} \cdot \hat{\mathbf{e}}_s}{c}\right)}$$

• For u << c, we can approximate

$$f_{obs} = f_0 \left(1 - \frac{\mathbf{u} \cdot \hat{\mathbf{e}}_b}{c} \right) \left(1 - \frac{\mathbf{u} \cdot \hat{\mathbf{e}}_s}{c} \right)^{-1}$$
$$= f_0 \left(1 - \frac{\mathbf{u} \cdot \hat{\mathbf{e}}_b}{c} \right) \left[1 + \frac{\mathbf{u} \cdot \hat{\mathbf{e}}_s}{c} - \left(\frac{\mathbf{u} \cdot \hat{\mathbf{e}}_s}{c} \right)^2 + \cdots \right]$$
$$= f_0 \left(1 + \frac{1}{c} \mathbf{u} \cdot \mathbf{e}_s - \hat{\mathbf{e}}_b \right] \cdots \right)$$
$$\cong f_0 + \frac{f_0}{c} \mathbf{u} \cdot \mathbf{e}_s - \hat{\mathbf{e}}_b \right]$$

LDA: problem with single source/detector

- Single beam frequency shift depends on:
 - velocity magnitude
 - Velocity direction

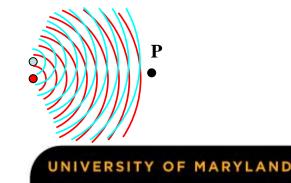
$$f_{obs} \cong f_0 + \frac{f_0}{c} \mathbf{u} \cdot \mathbf{e}_s - \hat{\mathbf{e}}_b$$

- Additionally, base frequency is quite high...
 - O[10¹⁴] Hz, making direct detection quite difficult

Solution?

- Optical heterodyne
 - Use interference of two beams or two detectors to create a "beating" effect, like two slightly out of tune guitar strings, e.g. $\cos[\omega_1 t] \cos[\omega_2 t] = \frac{1}{2} \left(\cos[(\omega_1 + \omega_2)t] + \cos[(\omega_1 \omega_2)t] \right)$
- Need to repeat for optical waves

THE A. JAMES CLARK SCHOOL of ENGINEERING



Optical Heterodyne

• Repeat, but allow for different frequencies...

$$I = \frac{c\varepsilon_o}{2} \left(\mathbf{E}_1 + \mathbf{E}_2 \right) \cdot \left(\mathbf{E}_1^* + \mathbf{E}_2^* \right) \qquad \qquad \mathbf{E}_1 = \mathbf{E}_{01} \exp\left[i\left(k_1 x - \omega_1 t + \varepsilon_1\right)\right] = \mathbf{E}_{01} \exp\left[i\phi_1\right] \\ \mathbf{E}_2 = \mathbf{E}_{02} \exp\left[i\left(k_2 x - \omega_2 t + \varepsilon_2\right)\right] = \mathbf{E}_{02} \exp\left[i\phi_2\right]$$

$$I = \frac{c\varepsilon_{o}}{2} \left[E_{o1}^{2} + E_{o2}^{2} + E_{01} \exp(i\phi_{1})E_{02} \exp(-i\phi_{2}) + E_{01} \exp(-i\phi_{1})E_{02} \exp(i\phi_{2}) \right]$$
$$I = \frac{c\varepsilon_{o}}{2} \left[E_{o1}^{2} + E_{o2}^{2} + 2E_{01}E_{02} \left\{ \frac{\exp(i(\phi_{1} - \phi_{2})) + \exp(-i(\phi_{1} - \phi_{2}))}{2} \right\} \right]$$

$$I = \frac{c\varepsilon_{o}}{2} \left[E_{o1}^{2} + E_{o2}^{2} + 2E_{01}E_{02}\cos(\phi_{1} - \phi_{2}) \right]$$

$$I = \frac{c\varepsilon_o}{2} \left[E_{o1}^2 + E_{o2}^2 + 2E_{o1}E_{o2}\cos\left[\left(\mathbf{k}_1 - \mathbf{k}_2\right)\cdot\mathbf{r} - \left(\omega_1 - \omega_2\right)t + \left(\varepsilon_1 - \varepsilon_2\right)\right] \right]$$
$$= \frac{1}{2} \left[I_{o1} + I_{o2} + 2\sqrt{I_{o1}I_{o2}}\cos\left[\left(\mathbf{k}_1 - \mathbf{k}_2\right)\cdot\mathbf{r} - \left(\omega_1 - \omega_2\right)t + \left(\varepsilon_1 - \varepsilon_2\right)\right] \right]$$
$$\underbrace{\bigvee}_{I_{PED}} \underbrace{\bigvee}_{I_{AC}} \underbrace{\bigvee$$

THE A. JAMES CLARK SCHOOL of ENGINEERING

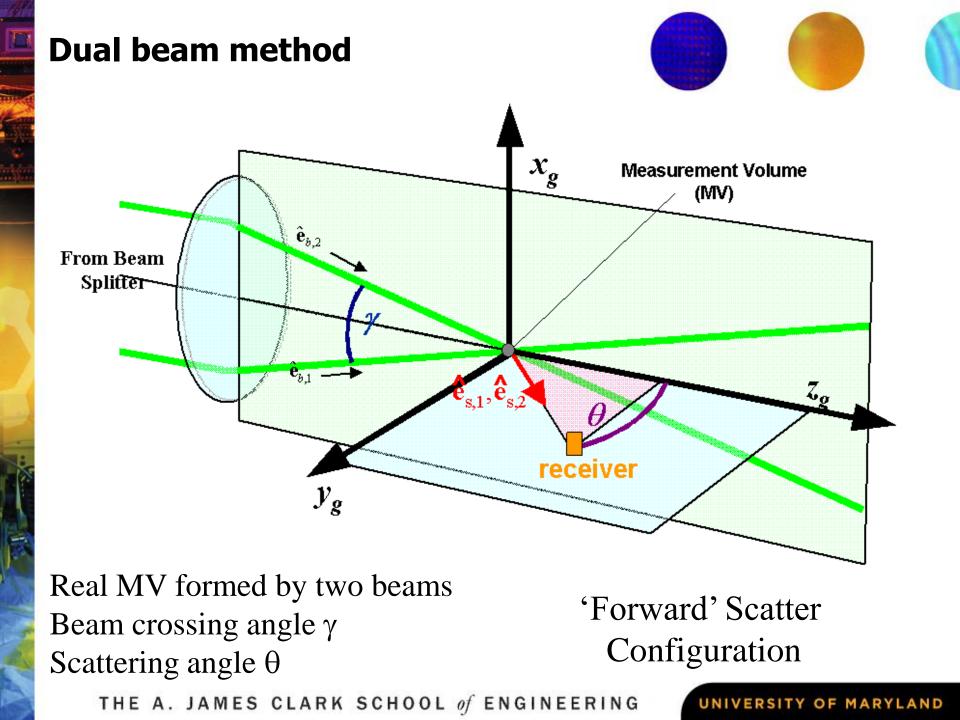
How do you get different scatter frequencies?

• For a single beam

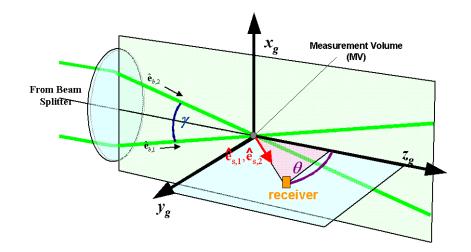
$$f_s \cong f_0 + \frac{f_0}{c} \mathbf{u} \cdot \mathbf{e}_s - \hat{\mathbf{e}}_b^{\mathsf{T}}$$

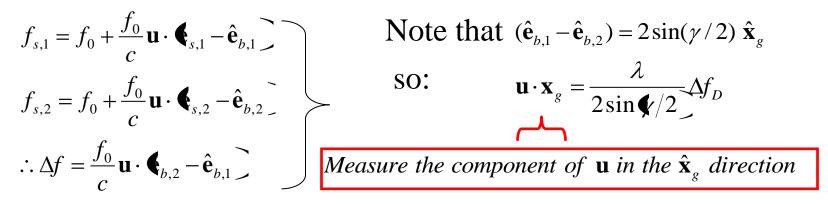
- Frequency depends on directions of e_s and e_b

- Three common methods have been used
 - Reference beam mode (single scatter and single beam)
 - Single-beam, dual scatter (two observation angles)
 - Dual beam (two incident beams, single observation location)



Dual beam method (cont)





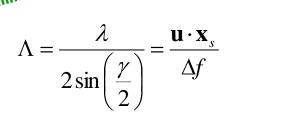
$$I = \frac{1}{2} \left[I_{o1} + I_{o2} + 2\sqrt{I_{o1}I_{o2}} \cos \left[\mathbf{k}_{1} - \mathbf{k}_{2} \right] \mathbf{r} - \left(\frac{4\pi \sin \mathbf{k}/2}{\lambda} \mathbf{u} \cdot \mathbf{x}_{g} \right) t + \mathbf{k}_{1} - \varepsilon_{2} \right] \right]$$

THE A. JAMES CLARK SCHOOL of ENGINEERING

Fringe Interference description

Interference "fringes" seen as standing waves

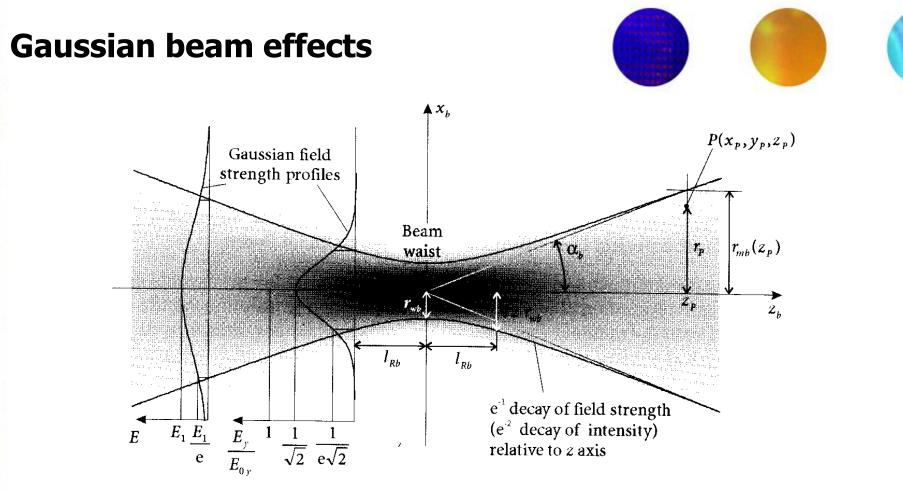
 Particles passing through fringes scatter light in regions of constructive interference



Adequate explanation for particles smaller than individual fringes

Λ

THE A. JAMES CLARK SCHOOL of ENGINEERING



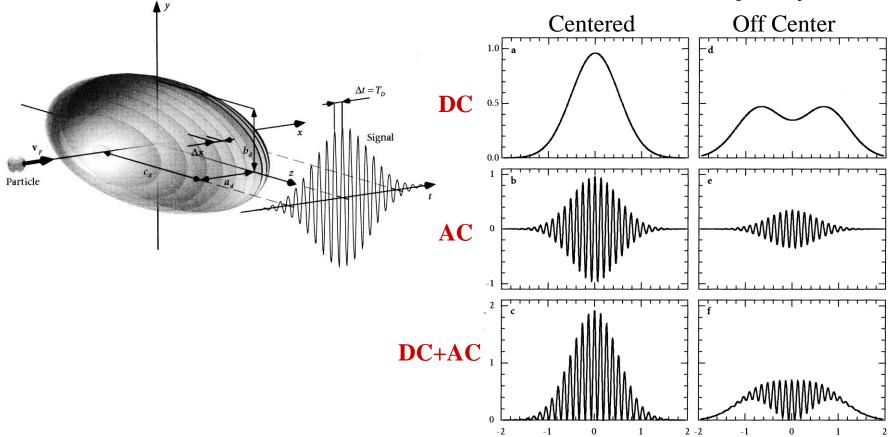
A single laser beam profile

Power distribution in MV will be Gaussian shaped
In the MV, true plane waves occur only at the focal point
Even for a perfect particle trajectory the strength of the Doppler 'burst' will vary with position

Figures from Albrecht et. al., 2003

THE A. JAMES CLARK SCHOOL of ENGINEERING

Non-uniform beam effects

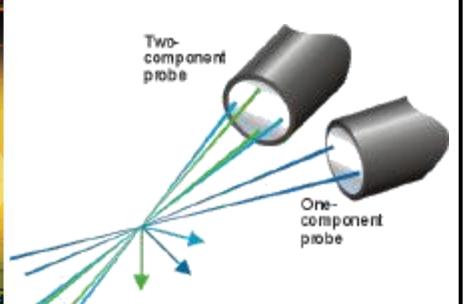


- Off-center trajectory results in weakened signal visibility -Pedestal (DC part of signal) is removed by a high pass filter after photomultiplier

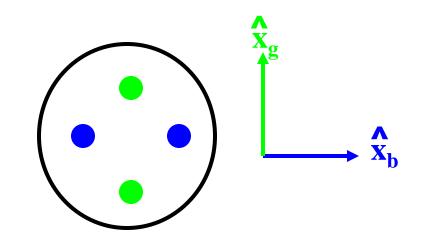
Figures from Albrecht et. al., 2003

THE A. JAMES CLARK SCHOOL of ENGINEERING

Multi-component dual beam



Three independent directions

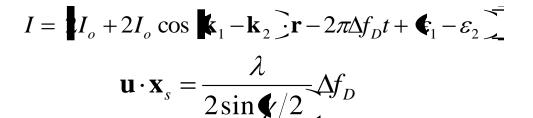


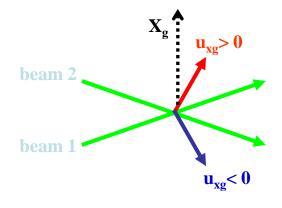
Two – Component Probe Looking Toward the Transmitter

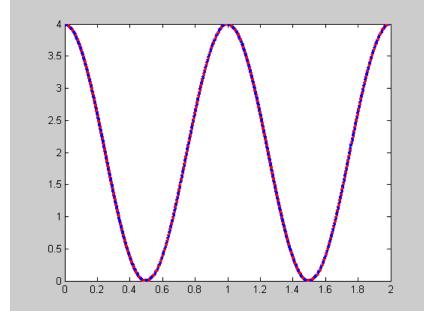
THE A. JAMES CLARK SCHOOL of ENGINEERING

Sign ambiguity...

Change in sign of velocity has no effect on frequency



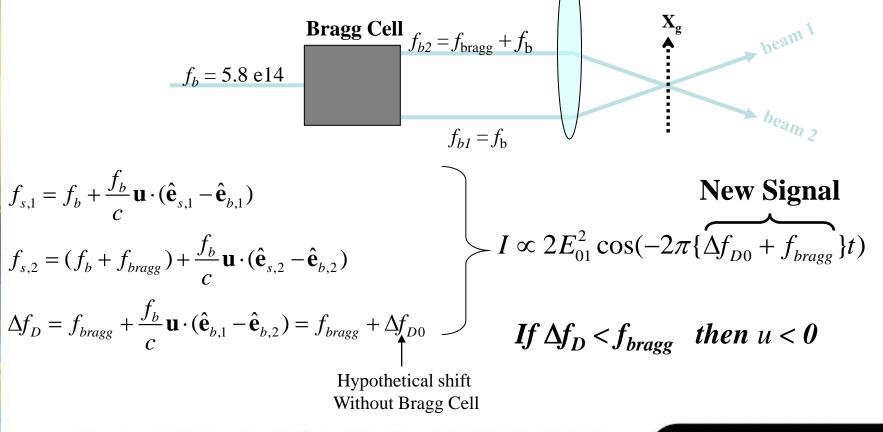




Velocity Ambiguity

Equal frequency beams

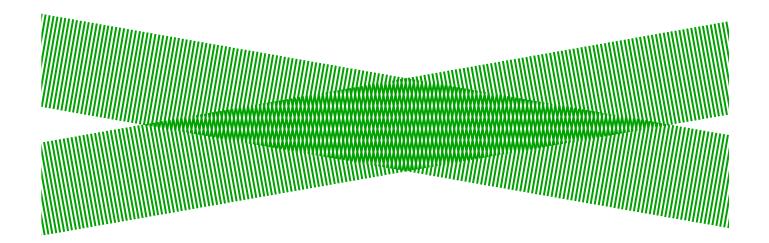
- No difference with velocity direction... cannot detect reversed flow
- Solution: Introduce a frequency shift into 1 of the two beams



THE A. JAMES CLARK SCHOOL of ENGINEERING

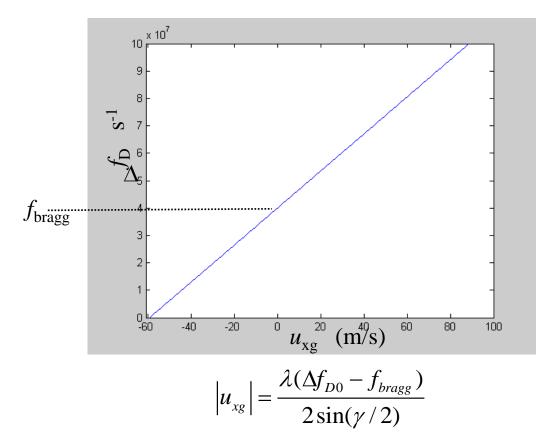
Frequency shift: Fringe description

- Different frequency causes an apparent velocity in fringes
 - Effect result of interference of two traveling waves as slightly different frequency



THE A. JAMES CLARK SCHOOL of ENGINEERING

Directional ambiguity (cont)



 $\lambda = 514$ nm, $f_{bragg} = 40$ MHz and $\gamma = 20$ °

Upper limit on positive velocity limited only by time response of detector THE A. JAMES CLARK SCHOOL of ENGINEERING UNIVER

Velocity bias sampling effects

LDA samples the flow based on

- Rate at which particles pass through the detection volume
- Inherently a flux-weighted measurement
- Simple number weighted means are biased for unsteady flows and need to be corrected

Consider:

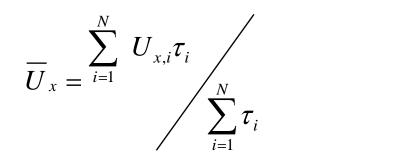
- Uniform seeding density (# particles/volume)
- Flow moves at steady speed of 5 units/sec for 4 seconds (giving 20 samples) would measure:

$$\frac{5*20}{20} = 5$$

 Flow that moves at 8 units/sec for 2 sec (giving 16 samples), then 2 units/sec for 2 second (giving 4 samples) would give

$$\frac{16^{\ast}8 + 4^{\ast}2}{20} = 6.8$$

THE A. JAMES CLARK SCHOOL of ENGINEERING



 $\overline{\mathbf{U}_{\mathbf{x}}^{\mathbf{n}}} = \sum_{i=1}^{N} U_{x,i} - \overline{U}_{x}^{\mathbf{n}} \tau_{i}$ $\sum_{i=1}^{N} \tau_{i}$

Mean Velocity

nth moment

Bias Compensation Formulas

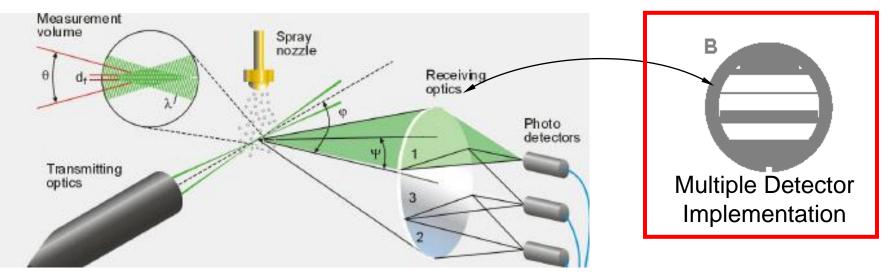
- The sampling rate of a volume of fluid containing particles increases with the velocity of that volume
- Introduces a bias towards sampling higher velocity particles

THE A. JAMES CLARK SCHOOL of ENGINEERING

Phase Doppler Anemometry

The overall phase difference is proportional to particle diameter

 $\Delta \varepsilon = \frac{2\pi n_i D}{\lambda} \beta \left(\theta, \psi, \gamma, n_p, n_i \right)$



The geometric factor, β

- Has closed form solution for p = 0 and 1 only
- Absolute value increases with ψ (elevation angle relative to 0°)
- Is independent of n_p for reflection