ASTEROID SIMULATIONS

Derek C. Richardson University of Maryland

Overview

- Main topic: simulating asteroid dynamics with eventdriven/hard-sphere discrete element methods.
 - Introduction to PKDGRAV.
 - Implementation details.
 - Collision resolution.
 - Complications.
 - Rigid body dynamics.

Walsh et al. 2011, Adv. Sci. Lett. 4, 311. http://www.astro.umd.edu/~dcr/reprints.html

Example: Binary Asteroid Formation

1999 KW4 Radar model, Ostro et al. 2005

YORP Spinup sims, Walsh et al. 2008

Single Asteroid RQ36 Howell et al. 2008, ACM

+

Binary 2004 DC Taylor et al. 2008, ACM

Šteins from Rosetta Images

Introduction to PKDGRAV

- "Parallel k-D tree GRAVity code"
 - Combines parallelism and a tree code to compute interparticle forces rapidly.
- PKDGRAV solves the equations of motion for gravity (point masses):

 Started as pure cosmology code written at U Washington —not freely available. ⁽³⁾

PKDGRAV Integrator

• Second-order leapfrog scheme (particle *i*, step *n*):

$$\dot{\mathbf{r}}_{i,n+1/2} = \dot{\mathbf{r}}_{i,n} + (h/2)\ddot{\mathbf{r}}_{i,n} \qquad \leftarrow \text{half-step "kick"}$$
New position
$$\mathbf{r}_{i,n+1} = \mathbf{r}_{i,n} + h\dot{\mathbf{r}}_{i,n+1/2} \qquad \leftarrow \text{full-step "drift"}$$

$$\dot{\mathbf{r}}_{i,n+1} = \dot{\mathbf{r}}_{i,n+1/2} + (h/2)\ddot{\mathbf{r}}_{i,n+1} \qquad \leftarrow \text{half-step "kick"}$$

 Can choose timestep interval *h* based on dynamical time associated with bulk mass density *ρ* (single- or multistep):

$$h \cong \frac{0.03}{\sqrt{G\rho}}.$$

Hard-sphere Discrete Element Method (HSDEM)

- For planetesimal dynamics problems, often need to consider particle collisions.
 - The "discrete elements" are the particles themselves, sometimes representing entire bodies, or pieces of a larger body.
- Introduce hard-sphere collision condition:

Separation
$$|\mathbf{r}_i - \mathbf{r}_j| = s_i + s_j$$
. Sum of radii

• Challenge: need to predict when collisions occur, so need efficient *neighbor-finding algorithm*.

Neighbor Finding

- To check all particle pairs for possible collision carries the same penalty as direct force summation: $O(N^2)$.
- Instead, use the tree code to reduce to $\sim O(N \log N)$.
 - Collision search then becomes an SPH-like "smoothing" operation.
- All collisions that could occur during time *h* considered.
 - Collider neighbor list reset after each collision to ensure no misses.
- Perform collision search at beginning of "drift" step.
 - Exploit linear update of particle positions: line intersection.
 - Essentially simulations are event-driven *within* each timestep.

Special Section: PKDGRAV Details

Spatial Binary Tree

k-D Tree

Spatial Binary Tree with Squeeze

Tree Walking

- Construct particle-particle and particle-cell interaction lists from top down for particles one bucket at a time.
- Define opening ball (based on *critical opening angle* θ) to test for cell-bucket intersection.
 - If bucket outside ball, apply multipole (c-list).
 - Otherwise open cell and test its children, etc., until leaves reached (which go on p-list).
- Nearby buckets have similar lists: amortize.

Tree Walking

Note multipole Q acceptable to all particles in cell d.

Other PKDGRAV Features

- Multipole expansion order.
 - Use hexadecapole (best bang for buck).
- Force softening (for cosmology).
 - Use spline-softened gravity kernel.
- Periodic boundary conditions.
 - Ewald summation technique available.
- Time steps.
 - Multistepping available (adaptive leapfrog).

Parallel Implementation

- Master layer (serial).
 - Controls overall flow of program.
- Processor Set Tree (PST) layer (parallel).
 - Assigns tasks to processors.
- Parallel *k*-D (PKD) layer (serial).
 - MIMD execution of tasks on each processor.
- Machine-dependent Layer (MDL, separate functions).
 - Interface to parallel primitives.

Domain Decomposition

Binary tree balanced by work factors. Nodes construct local trees.

End of Special Section

Back to collisions...

- How many neighbors to search?
 - Close-packed equal-size spheres have a maximum of 12 touching neighbors.
 - For less-packed situations, only concern is a more distant fastmoving particle.
 - Typically use N_s ~ 16–32, with h small enough to ensure no surprises.
 - Can also search for all neighbors within a ball radius (e.g. R ~ vh), but can end up with many more neighbors to check.

• Collision condition after interval *t*:

$$v^{2}t^{2} + 2(\mathbf{r} \cdot \mathbf{v})t + r^{2} = (s_{1} + s_{2})^{2}$$

• Solve for *t* (take smallest positive root):

$$t = \frac{-(\mathbf{r} \cdot \mathbf{v}) \pm \sqrt{(\mathbf{r} \cdot \mathbf{v})^2 - [r^2 - (s_1 + s_2)^2]v^2}}{v^2}$$

Collision Resolution

Post-collision velocities and spins:

$$\mathbf{v}_{1}' = \mathbf{v}_{1} + \frac{m_{2}}{M} \Big[(1 + \varepsilon_{n}) \mathbf{u}_{n} + \beta (1 - \varepsilon_{t}) \mathbf{u}_{t} \Big]$$
$$\mathbf{v}_{2}' = \mathbf{v}_{2} - \frac{m_{1}}{M} \Big[(1 + \varepsilon_{n}) \mathbf{u}_{n} + \beta (1 - \varepsilon_{t}) \mathbf{u}_{t} \Big]$$
$$\mathbf{\omega}_{1}' = \mathbf{\omega}_{1} + \beta \frac{\mu}{I_{1}} (1 - \varepsilon_{t}) (\mathbf{s}_{1} \times \mathbf{u})$$
$$\mathbf{\omega}_{2}' = \mathbf{\omega}_{2} - \beta \frac{\mu}{I_{2}} (1 - \varepsilon_{t}) (\mathbf{s}_{2} \times \mathbf{u})$$

where $M = m_1 + m_2$, $\mu = m_1 m_2/M$, $\mathbf{u} = \mathbf{v} + \mathbf{\sigma}$, $\mathbf{\hat{n}} = \mathbf{r}/r$, $\mathbf{u}_n = (\mathbf{u} \cdot \mathbf{\hat{n}})\mathbf{\hat{n}}$, $\mathbf{u}_t = \mathbf{u} - \mathbf{u}_n$, $\mathbf{s}_1 = \mathbf{s}_1\mathbf{\hat{n}}$, $\mathbf{s}_2 = -\mathbf{s}_2\mathbf{\hat{n}}$, $\mathbf{\sigma}_i = \mathbf{\omega}_i \times \mathbf{s}_i$, $\mathbf{\sigma} = \mathbf{\sigma}_2 - \mathbf{\sigma}_1$, $\beta = 2/7$ for spheres, and $I_i = (2/5) m_i s_i^2$.

Another Example

- Gravity + collisions between dissipative particles.
- Applications include planet formation, planetary rings, asteroid family formation, etc.

Leinhardt et al. 2000, Icarus 146, 133

What about $\varepsilon_n \& \varepsilon_t$?

What about $\varepsilon_n \& \varepsilon_t$?

What about $\varepsilon_n \& \varepsilon_t$?

Durda et al. 2011, Icarus 211, 849: $\varepsilon_n \approx 0.85 \ (\varepsilon_t = ?).$

Detail: Collision Handling in Parallel

- Each processor checks its particles for next collision during current drift (could involve off-processor particle).
- Master determines which collision goes next and allows it to be carried out (possible bottleneck for dense systems!).
- Check whether any predicted collisions changed.
- Repeat until all collisions within this drift step resolved.

Complications

- The "restitution" model of billiard-ball collisions (HSDEM) is only an approximation of what really happens.
- Collisions are treated as instantaneous (no flexing) and single-point contact.
- This leads to problems:
 - Inelastic collapse.
 - Missed collisions due to round-off error.
 - No persistent contacts (friction, normal forces).

Inelastic Collapse

 A rigid ball bouncing on a rigid flat surface must come to rest, but in HSDEM this requires an infinite number of increasingly smaller bounces to occur in a finite time (Zeno's paradox!).

Can also occur between two selfgravitating spheres in free space...

Inelastic Collapse

- How to fix it?
 - Impose minimum speed v_{\min} below which $\varepsilon_n \rightarrow 1$ (no dissipation).
 - Choose v_{min} so that this "vibration energy" is small compared to energy regimes of interest.
 - Petit & Hénon 1987a "sliding phase."

Inelastic Collapse

 Can occur in other circumstances, even *without* gravity, and at high impact speeds, e.g.

• To collapse, the matrix must have at least one real eigenvalue between 0 & 1. This is satisfied if $0 < \varepsilon < 7 - 4\sqrt{3}$ (~ 0.072).

Inelastic Collapse, continued

- It can be shown that as $N \rightarrow \infty$, $\varepsilon_{n,crit} \rightarrow 1!$
- Problem occurs in 2- & 3-D as well.
- How to fix it?
 - If distance travelled since last collision small (factor f_{crit}) compared to particle radius, set $\varepsilon_n = 1$ for next collision (e.g., $f_{crit} \sim 10^{-6}-10^{-3}$).
 - Other strategy (not implemented): store some fraction of impact energy as internal vibration to be released stochastically.

Round-off Error and Overlaps

- Despite precautions, if there are many collisions between many particles in a timestep, round-off error can cause a collision to be missed.
- In this case, some particles may be overlapping at start of next step.
 - Minimize by good choices of h, v_{min} , and f_{crit} .
 - But sometimes that's not enough...

Round-off Error and Overlaps

- Overlap handling strategies:
 - Abort with error (default).
 - Trace particles back in time until touching.
 - Push particles directly away until touching.
 - Merge particles (if merging enabled).
 - Apply repulsive force.
- For single particles, trace-back is best. For rigid bodies, repulsive force is best.
 - Or switch to soft-sphere DEM! But this has its own challenges... (see Thursday's lecture!).

Bonus Topic: Rigid Bodies

- Spheres are a special (easy, ideal) case.
- Perfect spheres are rarely encountered in nature, and may give misleading results when used to model granular flow, aggregation in planetary rings, etc.
- Simplest generalization: allow spheres to stick together in more complex shapes (rigid bodies). Advantages:
 - Can still use tree code for gravity & collisions.
 - Collisions are still sphere point-contact.
- Can also add breaking rules (stress response).
 - Cf. Richardson et al. 2009, P&SS 57, 183.

Rigid Bodies

- Use pseudo-particles to represent aggregate center of mass, including inertia tensor, rotation state, and orientation.
- Constituent particles constrained to move with and around center of mass —KDK only applied to pseudo-particle.
- Torques and collisions alter aggregate motion (translation + rotation).

Euler's Equations of Rigid Body Rotation

Need to evolve spin components, according to

$$I_{1}\dot{\omega}_{1} - \omega_{2}\omega_{3}(I_{2} - I_{3}) = N_{1}$$
$$I_{2}\dot{\omega}_{2} - \omega_{3}\omega_{1}(I_{3} - I_{1}) = N_{2}$$
$$I_{3}\dot{\omega}_{3} - \omega_{1}\omega_{2}(I_{1} - I_{2}) = N_{3}$$

where I_i , ω_i are principal moments and body spin components, respectively, and *N* is the external torque expressed in the body frame.

Euler's Equations of Rigid Body Rotation

 Previous equations represent a set of coupled ODEs that evolve the spin axis in the body frame. Need 3 more vector equations to evolve body orientation,

$$\frac{d\hat{\mathbf{p}}_{1}}{dt} = \omega_{3}\hat{\mathbf{p}}_{2} - \omega_{2}\hat{\mathbf{p}}_{3}$$
$$\frac{d\hat{\mathbf{p}}_{2}}{dt} = \omega_{1}\hat{\mathbf{p}}_{3} - \omega_{3}\hat{\mathbf{p}}_{1}$$
$$\frac{d\hat{\mathbf{p}}_{3}}{dt} = \omega_{2}\hat{\mathbf{p}}_{1} - \omega_{1}\hat{\mathbf{p}}_{2}$$

where $\hat{\mathbf{p}}_i$ are the principal axes of the body.

Euler's Equations of Rigid Body Rotation

- The moments of inertia (eigenvalues) and principal axes (eigenvectors) are found by diagonalizing the inertia tensor—only need to do this when particles added to/ removed from aggregate.
- Solve this set of 12 coupled ODEs any way you like (up to next collision, or end of drift). PKDGRAV uses a fifthorder adaptive Runge-Kutta (for strongly interactive systems, dissipation not a concern).

For Completeness

• Inertia tensor:

$$\mathbf{I}_{agg} = \sum_{i} \left[\mathbf{I}_{i} + m_{i} (\rho_{i}^{2} - \rho_{i} \rho_{i}) \right],$$

with $I_i = (2/5) m_i s_i^2 1$ and $\rho_i = r_i - r_a$.

• Torques:

$$\mathbf{N} = \mathbf{\Lambda}^{\mathrm{T}} \left[\sum_{i \in a} m_i (\mathbf{r}_i - \mathbf{r}_a) \times (\ddot{\mathbf{r}}_i - \ddot{\mathbf{r}}_a) \right],$$

where the sum is over all particles in aggregate a and

$$\mathbf{\Lambda} \equiv \left(\hat{\mathbf{p}}_1 \,|\, \hat{\mathbf{p}}_2 \,|\, \hat{\mathbf{p}}_3 \right).$$

Rigid Body Collisions

- Collision resolution complicated because impacts generally off-axis (non-central).
- Solutions do not permit surface friction.
 - However, off-axis collisions cause impulsive torques, allowing transfer of translational motion to rotation, and vice versa.
- Collision prediction also more complicated, due to body rotation.

Collision Prediction & Resolution

$$t = \frac{-(\mathbf{r} \cdot \mathbf{u}) \pm \sqrt{(\mathbf{r} \cdot \mathbf{u})^2 - [r^2 - (s_1 + s_2)^2][u^2 + (\mathbf{r} \cdot \mathbf{q})]}}{u^2 + (\mathbf{r} \cdot \mathbf{q})}$$

$$\Delta \mathbf{v}_{1} = \gamma (1 + \varepsilon_{n})(m_{2} / M) \mathbf{u}_{n}$$
$$\Delta \mathbf{v}_{2} = -\gamma (1 + \varepsilon_{n})(m_{1} / M) \mathbf{u}_{n}$$
$$\Delta \omega_{1} = m_{1} \mathbf{I}_{1}^{-1} (\mathbf{c}_{1} \times \Delta \mathbf{v}_{1})$$
$$\Delta \omega_{2} = m_{2} \mathbf{I}_{2}^{-1} (\mathbf{c}_{2} \times \Delta \mathbf{v}_{2})$$

See Richardson et al. 2009 for definitions of terms!

Bouncing Cubes

Aggregates in Rings: Randall Perrine

Perrine et al. 2011, Icarus 212, 719.

Testing Rigid Body Dynamics: Brett Morris

Testing Rigid Body Dynamics: Brett Morris

Summary

- HSDEM, as implemented in PKDGRAV, works well for simulations of asteroid dynamics.
 - Collisions are searched for during leapfrog drift step and carried out in time order.
 - Complications such as inelastic collapse are handled in configurable ways.
 - No explicit modeling of persistent contacts.
- Next lecture (Thursday):
 - Using HSDEM for granular mechanics: successes and failures.
 - Using soft-sphere (SS) DEM for simulations of surface processes on asteroids—implementation and preliminary results.