An Introduction to Fast Multipole Methods

Ramani Duraiswami
Institute for Advanced Computer Studies
University of Maryland, College Park
http://www.umiacs.umd.edu/~ramani

Joint work with Nail A. Gumerov
CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Fast Multipole Methods

- Computational simulation is becoming an accepted paradigm for scientific discovery.
Many simulations involve several million variables
- Most large problems boil down to solution of linear system or performing a matrix-vector product
- Regular product requires $O\left(N^{2}\right)$ time and $O\left(N^{2}\right)$ memory
- The FMM is a way to
accelerate the products of particular dense matrices with vectors
\square Do this using $O(N)$ memory
- FMM achieves product in $O(N)$ or $O(N \log N)$ time and memory
- Combined with iterative solution methods, can allow solution of problems hitherto unsolvable

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Linear Systems

- Solve a system of equations
- M is a $N \times N$ matrix, x is a N vector, s is a N vector
- Direct solution (Gauss elimination, LU Decomposition, SVD, \ldots) all need $O\left(N^{3}\right)$ operations
- Iterative methods typically converge in k steps with each step needing a matrix vector multiply $O\left(N^{2}\right)$
\square if properly designed, $k \ll N$
- A fast matrix vector multiplication algorithm requiring $O(N \log N)$ operations will speed all these algorithms
- So algorithm for fast matrix vector products is also a fast summation algorithm
- d products and sums per line
- N lines
- Total Nd products and $N d$ sums to calculate N entries
- Memory needed is $N M$ entries

Is this important?

- Argument:
-Moore's law: Processor speed doubles every 18 months
\square If we wait long enough the computer will get fast enough and let my inefficient algorithm tackle the problem
- Is this true?
\square Yes for algorithms with same asymptotic complexity
\square No!! For algorithms with different asymptotic complexity
- For a million variables, we would need about 16 generations of Moore's law before a $O\left(N^{2}\right)$ algorithm is comparable with a $O(N)$ algorithm
- Similarly, clever problem formulation can also achieve large savings.
© Duraiswami \& Gumerov, 2003-2004

Memory complexity

- Sometimes we are not able to fit a problem in available memory
DDon't care how long solution takes, just if we can solve it
- To store a $N \times N$ matrix we need N^{2} locations
$\square 1$ GB RAM $=1024^{3}=1,073,741,824$ bytes
$\square=>$ largest N is 32,768
- "Out of core" algorithms copy partial results to disk, and keep only necessary part of the matrix in memory
- Extremely slow
- FMM allows reduction of memory complexity as well
\square Elements of the matrix required for the product can be generated as needed
\square Can solve much larger problems (e.g., 10^{7} variables on a PC)
CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

The need for fast algorithms

- Grand challenge problems in large numbers of variables
- Simulation of physical systems
\square Electromagnetics of complex systems
\square Stellar clusters
\square Protein folding
\square Acoustics
-Turbulence
- Learning theory
- Kernel methods
\square Support Vector Machines
- Graphics and Vision
\square Light scattering ...
- General problems in these areas can be posed in terms of millions $\left(10^{6}\right)$ or billions $\left(10^{9}\right)$ of variables
- Recall Avogadro’s number (6.022 14199×10^{23}
molecules/mole
- Job of modeling is to find symmetries and representations that reduce the size of the problem
- Even after state of art modeling, problem size may be large

Dense and Sparse matrices

- Operation estimates are for dense matrices.
\square Majority of elements of the matrix are non-zero
- However in many applications matrices are sparse
- A sparse matrix (or vector, or array) is one in which most of the elements are zero.
-If storage space is more important than access speed, it may be preferable to store a sparse matrix as a list of (index, value) pairs.
\square For a given sparsity structure it may be possible to define a fast matrix-vector product/linear system algorithm

Structured matrices

- Fast algorithms have been found for many dense matrices
- Typically the matrices have some "structure"
- Definition:
\square A dense matrix of order $N \times N$ is called structured if its entries depend on only $O(N)$ parameters.
- Most famous example - the fast Fourier transform

Fourier Matrices

A Fourier matrix of order n is defined as the following

$$
\begin{aligned}
& F_{n}=\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \cdots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \cdots & \omega_{n}^{2(n-1)} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \cdots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right], \\
& \text { where } \\
& \omega_{n}=e^{-\frac{2 \pi i}{n}},
\end{aligned}
$$

is an nth root of unity.
FFT presented by Cooley and Tukey in 1965, but invented several times, including by Gauss (1809) and Danielson \& Lanczos (1948)

FFT and IFFT

The discrete Fourier transform of a vector x is the product $F_{n} x$.
The inverse discrete Fourier transform of a vector x is the product $F_{n}^{*} x$.

Both products can be done efficiently using the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT) in $O(n \log n)$ time.

The FFT has revolutionized many applications by reducing the complexity by a factor of almost n

Can relate many other matrices to the Fourier Matrix

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Structured Matrices

Fast Multipole Methods (FMM)

- Introduced by Rokhlin \& Greengard in 1987
- (usually) these matrices can be diagonalized by the

Called one of the 10 most significant advances in computing of the $20^{\text {th }}$ century Fourier matrix

- Speeds up matrix-vector products (sums) of a particular type
- Product of diagonal matrix and vector requires $\mathrm{O}(\mathrm{N})$ operations
- So complexity is the cost of FFT $(\mathrm{O}(N \log N))$ + product ($\mathrm{O}(\mathrm{N})$)

$$
s\left(x_{j}\right)=\sum_{i=1}^{N} \alpha_{i} \phi\left(x_{j}-x_{i}\right), \quad\left\{s_{j}\right\}=\left[\Phi_{j i}\right]\left\{\alpha_{i}\right\}
$$

- Order notation

Above sum requires $O(M N)$ operations.
OOnly keep leading order term (asymptotically important)

- For a given precision ε the FMM achieves the evaluation in $O(M+N)$ operations.
\square So complexity of the above is $\mathrm{O}(N \log N)$
Edelman: "FMM is all about adding functions"
- Structured Matrix algorithms are "brittle"

T Talk on Tuesday, next week
DFFT requires uniform sampling
\square Slight departure from uniformity breaks factorization

Is the FMM a structured matrix algorithm?

- FFT and other algorithms work on structured matrices
- What about FMM ?
- Can accelerate matrix vector products
\square Convert $O\left(N^{2}\right)$ to $O(N \log N)$

$$
\begin{aligned}
s\left(\mathbf{y}_{j}\right)= & \sum_{i=1}^{N} a_{i} \phi\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right) \\
& \mathrm{s}=\Phi \mathbf{a} \quad\left\{s_{j}\right\}=\left[\Phi_{j i}\right]\left\{\alpha_{i}\right\}
\end{aligned}
$$

Above sum also depends on $O(N)$ parameters $\left\{\mathrm{x}_{\mathrm{i}}\right\},\left\{\mathrm{y}_{\mathrm{j}}\right\}, \phi$
FMM can be thought of as working on "loosely" structured matrices

- However, can also accelerate linear system solution \square Convert $O\left(N^{3}\right)$ to $O(k N \log N)$
\square For some iterative schemes can guarantee $k \leq N$
\square In general, goal of research in iterative methods is to reduce value of k
WWell designed iterative methods can converge in very few steps
Active research area: design iterative methods for the FMM

A very simple algorithm

- Not FMM, but has some key ideas
- Consider

$$
S\left(x_{i}\right)=\sum_{j=1}^{N} \alpha_{j}\left(x_{i}-y_{j}\right)^{2} \quad i=1, \ldots, M
$$

- Naïve way to evaluate the sum will require $M N$ operations

Approximate evaluation

- FMM introduces another key idea or "philosophy"
\square In scientific computing we almost never seek exact answers
\square At best, "exact" means to "machine precision"
- Instead can write the sum as
- So instead of solving the problem we can solve a "nearby" problem that gives "almost" the same answer
-If this "nearby" problem is much easier to solve, and we can bound the error analytically we are done.
Can evaluate each bracketed sum over j and evaluate an expression of the type

$$
S\left(x_{i}\right)=\beta x_{i}^{2}+\gamma-2 x_{i} \delta
$$

- In the case of the FMM

Express functions in some appropriate functional space with a given basis
Requires $\mathrm{O}(\mathrm{M}+\mathrm{N})$ operations

- Key idea - use of analytical manipulation of series to achieve

Manipulate series to achieve approximate evaluation faster summation

- May not always be possible to simply factorize matrix entries
\square Use analytical expression to bound the error
- FFT is exact ... FMM can be arbitrarily accurate

CSCAMM FAM04:04/19/2004
© Duraiswami \& Gumerov, 2003-2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Approximation Algorithms

- Computer science approximation algorithms
\square Approximation algorithms are usually directed at reducing complexity of exponential algorithms by performing approximate computations
-Here the goal is to reduce polynomial complexity to linear order
\square Connections between FMM and CS approximation algorithms are not much explored

CSCAMM FAM04•04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Tree Codes

- Idea of approximately evaluating matrix vector products preceded FMM
- Tree codes (Barnes and Hut, 1986)
- Divides domain into regions and use approximate representations
- Key difference: lack error bounds, and automatic ways of adjusting representations
- Perceived to be easier to program

CSCAMM FAM04: 04/19/2004

Complexity

- The most common complexities are

O(1) - not proportional to any variable number, i.e. a fixed/constant amount of time
O $\mathrm{O}(\mathrm{N})$ - proportional to the size of N (this includes a loop to N and loops to constant multiples of N such as $0.5 \mathrm{~N}, 2 \mathrm{~N}, 2000 \mathrm{~N}$ - no matter what that is, if you double N you expect (on average) the program to take twice as long)

- $\mathrm{O}(\mathrm{N} \wedge 2)$ - proportional to N squared (you double N , you expect it to take four times longer - usually two nested loops both dependent on N).
- $O(\log N)$ - this is tricker to show - usually the result of binary splitting.

O $\mathrm{O}(\mathrm{N} \log \mathrm{N}$) this is usually caused by doing $\log \mathrm{N}$ splits but also doing N amount of work at each "layer" of splitting.
\square Exponential $\mathrm{O}\left(\mathrm{a}^{\mathrm{N}}\right)$: grows faster than any power of N

Some FMM algorithms

- Molecular and stellar dynamics

Computation of force fields and dynamics

- Interpolation with Radial Basis Functions
- Solution of acoustical scattering problems
- Helmholtz Equation
- Electromagnetic Wave scattering
-Maxwell's equations
- Fluid Mechanics: Potential flow, vortex flow
-Laplace/Poisson equations
- Fast nonuniform Fourier transform

Integral Equation

- FMM is often used in integral equations

FMM-able Matrices

- What is an integral equation?

$$
\begin{gathered}
\int k(x, y) u(x) d x+a u(y)=f(y) \\
\int k(x, y) u(x) d x=f(y)
\end{gathered}
$$

- Function $k(x, y)$ is called the kernel
- Integral equations are typically solved by "quadrature"

Quadrature is the process of approximately evaluating an integral

- If we can write

$$
\int k(x, y) u(x) d x=\sum_{j=1}^{N} k\left(x_{j}, y\right) u\left(x_{j}\right) w_{j}
$$

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004
(Factorization

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Factorization Truncation Number $\begin{aligned} & \text { Non-Degenerate Kernel: } \\ & \qquad \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{m=0}^{p-1} A_{m}\left(\mathbf{x}_{i}\right) F_{m}\left(\mathbf{y}_{j}\right)+\operatorname{Error}\left(p, \mathbf{x}_{i}, \mathbf{y}_{j}\right) \\ & v_{j}=\sum_{i=1}^{N} u_{i} \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{j=1}^{N} u_{i} \sum_{m=0}^{p-1} A_{m}\left(\mathbf{x}_{i}\right) F_{m}\left(\mathbf{y}_{j}\right)+\sum_{i=1}^{N} u_{i} \operatorname{Error}\left(p, \mathbf{x}_{i}, \mathbf{y}_{j}\right) \\ & =\sum_{m=0}^{p-1} B_{m} F_{m}\left(\mathbf{y}_{j}\right)+\operatorname{Error}_{j}(p, N), \quad j=1, \ldots, M . \end{aligned}$ Error Bound: $\quad\left\|\operatorname{Error}_{j}(p, N)\right\|<N \max \left\|u_{i}\right\| \max \left\|\operatorname{Error}\left(p, \mathbf{x}_{i}, \mathbf{y}_{j}\right)\right\|$. Middleman Algorithm $p \ll \min (M, N),$ Applicability: \mid Error $_{j}(p, N) \mid<\epsilon$.	

Factorization Problem:

-Usually there is no factorization available that provides a uniform approximation of the kernel in the entire computational domain.
-So we have to construct a patchwork-quilt of overlapping approximations, and manage this.

- Need representations of functions that allow this
- Need data structures for the management

Middleman Algorithm $\quad p \ll \min (M, N)$,
Applicability: $\left|\operatorname{Error}_{j}(p, N)\right|<\epsilon$.

Fast Multipole Methods

- Middleman (separation of variables)
\square No space partitioning
- Single Level Methods

Simple space partitioning (usually boxes)

- Multilevel FMM (MLFMM)

Multiple levels of space partitioning (usually hierarchical boxes)

- Adaptive MLFMM

Data dependent space partitioning

- Representation and Factorization
- Error Bounds and Truncation
- Translation
- Space Partitioning
- Data Structures

Examples of Matrices

Q Green's functions of Laplace and Helmholtz equations

$$
\begin{gathered}
\Phi(\mathbf{y}, \mathbf{x})=\frac{1}{4 \pi|\mathbf{y}-\mathbf{x}|}, \\
\Phi(\mathbf{y}, \mathbf{x})=\frac{\exp \{i k|\mathbf{y}-\mathbf{x}|\}}{4 \pi|\mathbf{y}-\mathbf{x}|} .
\end{gathered}
$$

Q Potential velocity field of a source located at \mathbf{x}_{i}

$$
\Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\mathrm{V}\left(\mathbf{y}, \mathbf{x}_{i}\right)=\frac{1}{4 \pi} \nabla_{\mathrm{y}} \frac{1}{\left|\mathbf{y}-\mathbf{x}_{i}\right|} .
$$

- Normal derivative on the surface

$$
\Phi(\mathbf{y}, \mathbf{x})=\frac{\partial}{\partial n(\mathbf{x})} \frac{1}{4 \pi|\mathbf{y}-\mathbf{x}|}=\mathbf{n}(\mathbf{x}) \cdot \nabla_{\mathbf{x}} \frac{1}{4 \pi|\mathbf{y}-\mathbf{x}|}
$$

\triangle Vorticity (vortex element is located at \mathbf{x}_{i})

$$
\Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\nabla_{y} \times V\left(\mathbf{y}, \mathbf{x}_{i}\right)
$$

Iterative Methods

- To solve linear systems of equations;
- Simple iteration methods;
- Conjugate gradient or similar methods;
- We use Krylov subspace methods:
\square Parameters of the method;
\square Preconditioners;
\square Research is ongoing.
- Efficiency critically depends on efficiency of the matrix-vector multiplication.

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Multipole-to-Local S|R-translation

$\mathrm{S} \mid \mathrm{R}$-translation Operator

S|R-translation Operators
for 3D Laplace and Helmholtz equations

$$
\begin{gathered}
\Phi(\mathbf{y})=\sum_{n=0}^{p-1} \sum_{m=-n}^{n} C_{n}^{m} S_{n}^{m e}\left(\mathbf{y}-\mathbf{x}_{* 1}\right)+\text { Error. } \\
\Phi(\mathbf{y})=\sum_{n=0}^{p-1} \sum_{m=-n}^{n} D_{n}^{m} R_{n}^{m}\left(\mathbf{y}-\mathbf{x}_{* 2}\right)+\text { Error } . \\
S_{n}^{m}\left(\mathbf{y}-\mathbf{x}_{* 1}\right)=\sum_{n^{\prime}=0}^{p-1} \sum_{m^{\prime}=-n^{\prime}}^{n^{\prime}}(S \mid R)_{n_{n}, n}^{m^{\prime} m}\left(\mathbf{x}_{* 2}-\mathbf{x}_{* 1}\right) R_{n^{\prime}}^{m^{\prime}}\left(\mathbf{y}_{j}-\mathbf{x}_{* 2}\right)+\text { Error. } \\
D_{n}^{m}\left(\mathbf{y}-\mathbf{x}_{* 1}\right)=\sum_{n^{\prime}=0}^{p-1} \sum_{m^{\prime}=-n^{\prime}}^{n^{\prime}}(S \mid R)_{m n^{\prime}}^{m m^{\prime}}\left(\mathbf{x}_{* 2}-\mathbf{x}_{* 1}\right) C_{n^{\prime}}^{m^{\prime}}\left(\mathbf{y}_{j}-\mathbf{x}_{* 2}\right)+\text { Error } .
\end{gathered}
$$

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Week 2: Representations

- Gregory Beylkin (University of Colorado) "Separated Representations and Fast Adaptive Algorithms in Multiple Dimensions"
- Alan Edelman (MIT) "Fast Multipole: It's All About Adding Functions in Finite Precision"
- Vladimir Rokhlin (Yale University) "Fast Multipole Methods in Oscillatory Environments: Overview and Current State of Implementation"
- Ramani Duraiswami (University of Maryland) "An Improved Fast Gauss Transform and Applications"
- Eric Michielssen (University of Illinois at Urbana-Champaign) "Plane Wave Time Domain Accelerated Integral Equation Solvers"

Complexity of Translation

- For 3D Laplace and Helmholtz series have p^{2} terms;
- Translation matrices have p^{4} elements;
- Translation performed by direct matrix-vector multiplication has complexity $O\left(p^{4}\right)$;
- Can be reduced to $O\left(p^{3}\right)$;
- Can be reduced to $O\left(p^{2} \log ^{2} p\right)$;
- Can be reduced to $O\left(p^{2}\right)(?)$.

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Week 2: Applications

- Nail Gumerov (University of Maryland) "Computation of 3D Scattering from Clusters
of Spheres using the Fast Multipole Method"
- Weng Chew (University of Illinois at Urbana-Champaign) "Review of Some Fast

Algorithms for Electromagnetic Scattering"

- $\quad \begin{aligned} & \text { Leslie Greengard (Courant Institute, NYU) "FMM Libraries for Computational } \\ & \text { Electromagnetics" }\end{aligned}$

Electromagnetics"

- Qing Liu (Duke University) "NUFFT, Discontinuous Fast Fourier Transform, and
- Some Applications"
- Eric Michielssen (University of Illinois at Urbana-Champaign) "Plane Wave Time

Domain Accelerated Integral Equation Solvers"

- Gregory Rodin (University of Texas, Austin) "Periodic Conduction Problems: Fast

Multipole Method and Convergence of Integral Equations and Lattice Sums

- Stephen Wandzura (Hughes Research Laboratories) "Fast Methods for Fast
- Computers" Toru Takahashi (Institue of Physical and Chemical Research (RIKEN), Japan) "Fast

Computing of Boundary Integral Equation Method by a Special-purpose Computer"

- Ramani Duraiswami (University of Maryland) "An Improved Fast Gauss Transform and Applications"

Tree Codes:

- Atsushi Kawai (Saitama Institute of Technology) "Fast Algorithms on GRAPE Special-Purpose Computers"
- Walter Dehnen (University of Leicester) "falcON: A Cartesian FMM for the Low-Accuracy Regime"
- Robert Krasny (University of Michigan) "A Treecode Algorithm for Regularized Particle Interactions"
- Derek Richardson (University of Maryland)
"pkdgrav: A Parallel k-D Tree Gravity Solver for NBody Problems"

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.
Summation Problems

Matrix-Vector Multiplication

```
Compute matrix vector produc
v=\Phiu
vj - \sum\sum 就的, j-1,\ldots,M,
where
    \Phi}\mp@subsup{\Phi}{\mu}{}=\Phi(\mp@subsup{y}{j}{},\mp@subsup{\mathbf{x}}{i}{}),j=1,\ldots,M,i=1,\ldots,N
or
```



```
Generally we have two sets of points in d-dimensions
Sources:X -{\mp@subsup{\mathbf{x}}{1}{},\ldots,\mp@subsup{\mathbf{x}}{N}{}},,\mp@subsup{\mathbf{x}}{i}{}\in\mp@subsup{\mathbb{R}}{}{d},i=1,\ldots,N,
Receivers: }\textrm{Y}={\mp@subsup{\mathbf{y}}{1}{},\ldots,\mp@subsup{\mathbf{y}}{M}{\prime}},\mp@subsup{\mathbf{y}}{j}{}\in\mp@subsup{\mathbb{R}}{}{d},j=1,\ldots,M
The receivers also can be called "targets" or "evaluation points"
```


Why \mathbf{R}^{d} ?

- $d=1$

Scalar functions, interpolation, etc.

- $\mathrm{d}=2,3$
- Physical problems in 2 and 3 dimensional space
- $\mathrm{d}=4$

3D Space + time, 3D grayscale images

- $d=5$

Color 2D images, Motion of 3D grayscale images

- $\mathrm{d}=6$

Color 3D images

- $\mathrm{d}=7$

Motion of 3D color images

- d = arbitrary
d-parametric spaces, statistics, database search procedures

Fields (Potentials)

Field (Potential) of a single
(ith) unit source

Field (Potential) of the set
of sources of intensities $\left\{u_{i}\right\}$
Fields are continuous!
(Almost everywhere)

CSCAMMEAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Straightforward Computational Complexity:

Error: 0 ("machine" precision)

The Fast Multipole Methods look for computation of the same problem with complexity $o(M N)$ and error < prescribed error.

In the case when the error of the FMM does not exceed the machine precision error (for given number of bits) there is no difference between the "exact" and "approximate" solution.

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Reduction of Complexity

Straightforward (nested loops):
for $j=1, \ldots, M$
$v_{j}=0 ;$
for $i=1, \ldots, N$ $v_{j}=v_{j}+\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right) u_{i} ;$ end;
end;
Complexity: $O(M N)$

If $p \ll \min (M, N)$ then complexity reduces!

Factroized:
for $m=0, \ldots, p-1$
$c_{m}=0 ;$
for $i=1, \ldots, N$
$c_{m}=c_{m}+a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) u_{i} ;$
end;
end;
for $j=1, \ldots, M$
$v_{j}=0 ;$
for $m=0, \ldots, p-1$ $m=0, \ldots, p-1$
$v_{j}=v_{j}+c_{m} f_{m}\left(\mathbf{y}_{j}-\mathbf{x}.\right) ;$
end;
end;
Complexity: $O(p N+p M)$
© Duraiswami \& Gumerov, 2003-2004

Example Problem (1D Gauss Transform)

Compute

$$
v_{j}=\sum_{i=1}^{N} \Phi\left(y_{j}, x_{i}\right) u_{i}, j=1, \ldots, M, \quad \Phi\left(y, x_{i}\right)=e^{-\left(b-x_{i}\right)^{2}}
$$

where x_{i}, y, and u_{s} are random numbers distributed on $[0,1]$.
Solution:
.
Solution:
We have

Let us select $x .=0.5$, then truncation number $p=10$ is sufficient for computations with $\epsilon=10^{-6}$ and $N \leqslant 10^{4}$. The formula for fast computations will be then

$$
\begin{align*}
& v_{j}=e^{-\left(y_{j}-x_{0}\right)^{2}} \sum_{m=0}^{p-1} c_{m}\left(y_{j}-x_{0}\right)^{m}, j=1, \ldots, M . \\
& c_{m}=\frac{2^{m}}{m!} \sum_{i=1}^{N} e^{-\left(x_{r}+x\right)^{2}}\left(x_{i}-x_{0}\right)^{m} u_{j} \tag{104}
\end{align*}
$$

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Complexity of the Middleman Method
\mid error $_{p} \mid \leqslant \sigma^{-p}$, FMMerror ${ }_{p} \leqslant \sigma^{-p} N$,

$$
p \sim \log \frac{N}{\epsilon},
$$

ComplexityFMM $=O(p N)=O\left(N \log \frac{N}{\epsilon}\right)$

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Far Field (Singular) Expansions

Let
$\mathbf{x}_{*} \in \mathrm{R}^{d}$.
Might be
Singular (at $\mathbf{y}=\mathbf{x}_{*}$) Basis Functions
We call expansion

far field expansion (or S-expansion) outside a sphere
if the series converges for $\forall \mathbf{y},\left|\mathbf{y}-\mathbf{x}_{*}\right|>R_{*}$.

Middleman for Well Separated Domains:

CSCAMM FAM04:04/19/2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Problem with "Outliers", or "Bad" Points

Example from Room Acoustics

Natural Spatial Grouping for Well Separated Sets (Grouping with Respect to the Target Set)

CSCAMMEAMO4. 04/19/2004
Natural Spatial Grouping for Well Separated Sets (continuation)

K
Groups

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Natural Spatial Grouping for Well Separated
Sets (continuation)

S-expansions
S-expansions
near the group centers

K
Groups

M
Targets

Examples of Natural Spatial Grouping

- Stars (Form Galaxies, Gravity);
- Flow Past a Body (Vortices are Grouped in a Wake);
- Statictics (Clusters of Statictical Data Points);
- People (Organized in Groups, Cities, etc.);
- Create your own example !

Space Partitioning
"Modified Middleman"

Deficiencies of "Natural Grouping"

- Data points may be not naturally grouped;
- Need intelligence to identify the groups: Problem with the algorithms (Artificial Intelligence?)
- Problem dependent.

The Answer Is: Space Partitioning

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

A Modified Middleman Algorithm

Decomposition of the sum: Singular Part (sources in the neighborhood)$$
v\left(\mathbf{y}_{j}\right)=\sum_{\mathbf{x}_{i} \in R_{n}^{n}} u_{i} \Phi\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right)+\sum_{\mathbf{x}_{j} \in R_{n}^{n}} u_{i} \Phi\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right), \quad \mathbf{y}_{j} \in R_{n} .
$$

- Factorization of the regular part

$$
\Phi\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right)=\sum_{m=0}^{p-1} a_{m}\left(\mathbf{x}_{i}, \mathbf{x}_{n *}\right) R_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{n *}\right)+\text { Error }_{p}, \quad \mathbf{y}_{j}, \mathbf{x}_{n} \in R_{n}, \quad \mathbf{x}_{i} \in R_{n}^{-}
$$

- Fast computation of the regular part

$$
\sum_{\mathbf{x}_{i} \in R_{n}^{2}} u_{i} \Phi\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right)=\sum_{m=0}^{p-1}\left[\sum_{\mathbf{x}_{i} \in R_{n}^{2}} u_{i} a_{m}\left(\mathbf{x}_{i}, \mathbf{x}_{n *}\right)\right] R_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{n *}\right) .
$$

- Direct summation of the singular part, $\sum_{x_{i} \in R_{i}^{R}} u_{i} \Phi\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right)$

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Asymptotic Complexity of the "Modified Middleman Method"

- Let N be the number of sources, M the number of targets, and K the number of target boxes. contains
- Each target box, $R_{n},{ }^{\top} M_{n}$ targets, $n=1, \ldots, K$

Q The neighborhood of each target box contains N_{n} sources, $n=1, \ldots, K$.
0 Computation of the expansion coefficients for the regular part for the nth box requires $O\left(\left(N-N_{n}\right) p\right)$ operations.
Q Evaluation of the regular expansion for the nth box requires $O\left(M_{n} p\right)$ operations.
Q Direct computation of the singular part requires $O\left(M_{n} N_{n}\right)$ operations.

- Total complexity is:

$$
\text { Complexity }=O\left(\sum_{n=1}^{K}\left[\left(N-N_{n}\right) p+M_{n} p+M_{n} N_{n}\right]\right)
$$

Optimization of the box number

$$
F(K)=\frac{M N}{K} \operatorname{Pow}(d)+(K-\operatorname{Pow}(d)) N p+M p
$$

$$
K_{o p t}=\left[\frac{M N P o w(d)}{N p}\right]^{1 / 2}=\sqrt{\frac{M P o w(d)}{p}} .
$$

$K_{\text {opt }}$
Optimum complexity

$$
\text { Complexity }=O\left(F\left(K_{\text {opt } t}\right)\right)=O\left(N p\left(2 \sqrt{\frac{M P o w(d)}{p}}-\operatorname{Pow}(d)\right)+M p\right)
$$

For $M \sim N, p \ll N:$

$$
\text { Complexity }=O\left(N^{3 / 2} p^{1 / 2}\right)
$$

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.
\square
Translations Single Level FMM

Translations (Reexpansions)

Let $\left\{F_{m}\left(\mathbf{y}-\mathbf{x}_{\bullet 1}\right)\right\}$ and $\left\{G_{m}\left(\mathbf{y}-\mathbf{x}_{* 2}\right)\right\}$ be two sets of basis functions centered at $\mathbf{x}_{.1}$ and $\mathbf{x}_{\bullet 2}$, such that $\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)$ can be represented by two absolutely and uniformly convergent series in domains Ω_{1} and $\Omega_{2} \subset \Omega_{1}$:

Under "ranslation" or "reexpansion" we mean an operator which relates the two sets of expansion coefficients:

$$
\begin{aligned}
& \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{m=0}^{\infty} a_{n}\left(\mathbf{x}_{i}-\mathbf{x} \cdot 1\right) F_{n}\left(\mathbf{y}_{j}-\mathbf{x}_{\cdot 1}\right), \quad \mathbf{y}_{j} \in \Omega_{1} \\
& \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{m=0}^{\infty} b_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{\cdot 2}\right) G_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{\cdot 2}\right), \quad \mathbf{y}_{j} \in \Omega_{2} \subset \Omega_{1}
\end{aligned}
$$

$$
\left\{b_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{\bullet 2}\right)\right\}=(F \mid G)(\mathbf{t})\left\{a_{n}\left(\mathbf{x}_{i}-\mathbf{x}_{\cdot 1}\right)\right\}, \quad \mathbf{t}=\mathbf{x}_{\cdot 2}-\mathbf{x}_{\cdot 1}
$$ $\left\{b_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{\bullet 2}\right)\right\}=(F \mid G)(\mathbf{t})\left\{a_{n}\left(\mathbf{x}_{i}-\mathbf{x}_{\bullet 1}\right)\right\}, \quad \mathbf{t}=\mathbf{x}_{\cdot 2}-\mathbf{x}_{\bullet 1}$

$\mathrm{R} \mid \mathrm{R}$-reexpansion (Local to Local, or
L2L)

S|S-reexpansion (Far to Far, or Multipole to Multipole, or M2M)

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Spatial Domains

Potentials due to sources in these spatial domains

Boxes with these numbers belong to these spatial domains
CSCAMMEAM04: 04/19/2004 © Duraiswami \& Gumerov, 2003-2004

Definition of Potentials

$$
\begin{aligned}
& \Phi_{1}^{(n)}(\mathbf{y})=\sum_{\mathbf{x}_{i} \in E_{1}(n)} u_{i} \Phi\left(\mathbf{y}, \mathbf{x}_{i}\right), \\
& \Phi_{2}^{(n)}(\mathbf{y})=\sum_{\mathbf{x}_{i} \in E_{2}(n)} u_{i} \Phi\left(\mathbf{y}, \mathbf{x}_{i}\right), \\
& \Phi_{3}^{(n)}(\mathbf{y})=\sum_{\mathbf{x}_{i} \in E_{3(n)}} u_{i} \Phi\left(\mathbf{y}, \mathbf{x}_{i}\right),
\end{aligned}
$$

Since domains $E_{2}(n)$ and $E_{3}(n)$ are complimentary:

$$
\Phi(\mathbf{y})=\sum_{i=1}^{N} u_{i} \Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\sum_{\mathbf{x}_{i} \in E_{2}(n) \cup E_{3}(n)} u_{i} \Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\Phi_{2}^{(n)}(\mathbf{y})+\Phi_{3}^{(n)}(\mathbf{y})
$$

for arbitrary n.

CSCAMM FAM04:04/19/2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Step 1. Generate S-expansion coefficients for each box

$\Phi_{1}^{(n)}(\mathbf{x})$	$=\mathbf{C}^{(n)} \circ \mathbf{S}\left(\mathbf{x}-\mathbf{x}_{c}^{(n)}\right)$,
$\mathbf{C}^{(n)}$	$=\sum_{x_{i} \in E_{1}(n, L)} u_{i} \mathbf{B}\left(\mathbf{x}_{i}, \mathbf{x}_{c}^{(n)}\right)$.

For $n \in$ NonEmptySource
Get $\mathbf{x}_{c}{ }^{(n)}$, the center of the box;
$\mathbf{C}^{(n)}=\mathbf{0}$;
For $\mathbf{x}_{i} \in E_{1}(n)$ loop over all sources in the box
Get $\mathbf{B}\left(\mathbf{x}_{i}, \mathbf{x}_{c}{ }^{(n)}\right)$, the S-expansion coefficients
near the center of the box;
$\mathbf{C}^{(n)}=\mathbf{C}^{(n)}+u_{i} \mathbf{B}\left(\mathbf{x}_{i}, \mathbf{x}_{c}{ }^{(n)}\right) ;$
End;
End;
Implementation can be different! All we needraiss tange\& Gulnnerov, 2003-2004

Step 2. (S|R)-translate expansion coefficients

$$
\begin{aligned}
\Phi_{3}^{(n)}(\mathbf{y}) & =\mathbf{D}^{(n)} \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{c}^{(n)}\right), \\
\mathrm{D}^{(n)} & =\sum_{m e l_{3}^{(n)}}(\mathbf{S} \mid \mathbf{R})\left(\mathbf{x}_{c}^{(n)}-\mathbf{x}_{c}^{(m)}\right) \mathbf{C}^{(n)} .
\end{aligned}
$$

loop over all non-empty

For $n \in$ NonEmptyEvaluation
Get $\mathbf{x}_{c}{ }^{(n)}$, the center of the box;
$\mathbf{D}^{(n)}=\mathbf{0}$; loop over all non-empty source boxes
For $m \in I_{3}(n)$ outside the neighborhood of the n-th box
Get $\mathbf{x}_{c}{ }^{(m)}$, the center of the box;
$\mathbf{D}^{(n)}=\mathbf{D}^{(n)}+(\mathbf{S} \mid \mathbf{R})\left(\mathbf{x}_{c}{ }^{(n)}-\mathbf{x}_{c}^{(m)}\right) \mathbf{C}^{(m)} ;$
End;
End;
Implementation can be different!
CSCAMM FAM 04: 04/19/2004 All we weedrasstanget ${ }^{\text {D }}$ (nitherov, 2003-2004
$\mathrm{S} \mid \mathrm{R}$-translation

CSCAMMEAM04: 04/19/2004

Step 3. Final Summation

$$
v_{j}=\Phi\left(\mathbf{y}_{j}\right)=\sum_{x_{i} \in E_{2}(n)} \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i)}\right)+\mathrm{D}^{(n)} \circ \mathrm{R}\left(\mathbf{y}_{j}-\mathbf{x}_{c}^{(n)}\right), \quad \mathbf{y}_{j} \in E_{1}(n)
$$

For $n \in$ NonEmptyEvaluation loop over all boxes Get $\mathbf{x}_{c}{ }^{(n)}$, the center of the box;
For $\mathbf{y}_{j} \in E_{1}(n) \quad$ loop over all evaluation points in the box $v_{j}=\mathbf{D}^{(n)} \circ \mathbf{R}\left(\mathbf{y}_{j}-\mathbf{x}_{c}^{(n)}\right) ;$
For $\mathbf{x}_{i} \in E_{2}(n) \longleftarrow, \begin{aligned} & \text { loop over all sources in the } \\ & \text { neighborhood of the } n \text {-th box }\end{aligned}$

$$
v_{j}=v_{j}+\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right) ;
$$

End;
© Duraiswami \& Gumerov, 2003-2004
CSCAMM FAM04:04/19/2004 © Duraiswami \& Gumerov, 20 Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Asymptotic Complexity of SLFMM

Then Complexity is:

- For Step 1: $O(P N)$
- For Step 2: $\quad O\left(P^{2} K^{2}\right)$
- For Step 3: $O(P M+M s)$
- Total: $\quad O\left(P N+P^{2} K^{2}+P M+M s\right)=$

$$
O\left(P N+P^{2} K^{2}+P M+M N / K\right)
$$

- By sopassiliaic thata.an easily find neighbors, and lists of points in each box.
- Translation is performed by straightforward $P \times P$ matrix-vector multiplication,
- The source and evaluation points are distributed uniformly, and there are K boxes, with s source points in each box ($s=N / K$). We call s the grouping (or clustering) parameter.
- The number of neighbors for each box is $O(1)$.

Complexity of Optimized SLFMM

$$
\begin{aligned}
F\left(K_{o p t}\right) & =P N+P^{2}\left(\frac{M N}{2 P}\right)^{2 / 3}+P M+P M N\left(\frac{M N}{2 P}\right)^{-1 / 3} \\
& =P(M+N)+(M N)^{2 / 3} O\left(P^{4 / 3}\right) .
\end{aligned}
$$

At $K=K_{o p t}$, and $M=O(N)$, the complexity of SLFMM is:

$$
O\left(P N+P^{4 / 3} N^{4 / 3}\right)=O\left(P^{4 / 3} N^{4 / 3}\right)
$$

Hierarchical Space Partitioning (Multilevel FMM)

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Example of Multi Level Structure (Post Offices)		
Source Hierarchy (Area)	- People (sources, Level 5) - Mail Box, Post Master (Level 4) - Local Post Offices (Level 3) - City Post Office (Level 2)	Mail Transfer
AIRCRAFT		
Receiver Hierarchy (Area)	- City Post Office (Level 2) - Local Post Offices (Level 3) - Post Master (Level 4) - People (receivers, Level 5)	Mail Transfer
CSCAMM FAM04:0419/2004 © Duraiswami \& Gumerov, 2003-2004		

The MLFMM will be considered in more details in separate lectures

Content

- Function Representations and FMM Operations
- Matrix Representations of Translation Operators
- Integral Representations and Diagonal Forms of Translation Operators

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Function Representations and FMM
Operations
© © Duraiswami \& Gumerov, 2003-2004
CSCAMM FAM04:04/19/2004

What do we need in the FMM?

- Sum up functions;
- Translate functions (or represent them in different bases);
- In computations we can operate only with finite vectors.
mat velots.
(

Finite Approximations	
Let	
$f: \mathbb{R}^{d} \rightarrow \mathrm{C} \quad\left(f-f(\mathbf{y}), \quad \mathbf{y} \in \mathbb{R}^{d}\right)$.	
We consider approximations of $f(y)$ inside or outside a sphere $\Omega_{\Omega}\left(\mathbf{x}_{*}\right)$ of radius a centered at $\mathrm{y}=\mathrm{x}_{\mathrm{N}}$. We say that function $L_{P}\left(\mathbf{y}, \mathbf{x}_{*}\right)$ tuniformly approximate $f(\mathbf{y})$ inside a sphere $\Omega_{s}(\mathbf{x} *)$ if	
$\exists \epsilon_{P}>0, \quad \forall \mathbf{y} \in \Omega_{a}(\mathbf{x} \cdot) \subset \mathbb{R}^{d}, \quad\left\|f(\mathbf{y})-L_{P}(\mathbf{y}, \mathbf{x},)\right\|<\epsilon_{P},$ and function $F_{P}(\mathbf{y})$ uniformly approximate $f(\mathbf{y})$ outside a sphere $\Omega_{s}(\mathbf{x}$ • $)$ if	
The subscript P near functions $L_{P}(\mathbf{y}, \mathbf{x})$ and $F_{P}\left(\mathbf{y}, \mathbf{x}_{*}\right)$ means that these functions can be determined by specification of a vector C in the complex P dimensional space C^{P}, which we call representing vector. So we have a one-to-one mapping of the space of functions $L_{P}\left(\mathbf{y}, \mathbf{x}_{*}\right)$ to $\mathrm{C}(\mathbf{x}$. $)$ and the space of functions $F_{P}(\mathbf{y}, \mathbf{x}$, to $\mathrm{C}(\mathrm{x}$.)	
$\begin{aligned} & L_{P}(\mathbf{y}, \mathbf{x} \\ & F_{P}(\mathbf{y}, \mathbf{x} \end{aligned}$	$\begin{array}{ll} \left., c_{p}\right), & \mathrm{c} \in \mathrm{C}^{p}, \\ \left., c_{p}\right), & \mathrm{c} \in \mathrm{C}^{p} . \end{array}$
The representing vector $\mathrm{C}(\mathbf{x}$.$) for L_{P}(\mathbf{y}, \mathbf{x}$, corresponds to $F_{P}(\mathbf{y} ; \mathbf{x}$. $)$ we call it as far-fil	ocal representation. In the case when $\mathrm{C}(\mathbf{x}$.)
CSCAMM FAM04:04/19/2004	© Duraiswami \& Gumerov, 2003-2004

Examples:

$P=p$ (real and complex functions)

Taylor expansion (for differentiable functions):

$$
\begin{aligned}
L_{p}\left(y, x_{*}\right) & =\sum_{n=0}^{p-1} c_{n}\left(y-x_{*}\right)^{n}, \\
c_{n} & =\left.\frac{1}{n!} \frac{d^{n} f}{d y^{n}}\right|_{y-x,}, \quad n=0, \ldots, p-1 .
\end{aligned}
$$

Asymptotic expansion (for some decaying functions):

$$
\begin{aligned}
F_{p}\left(y, x_{*}\right) & =\sum_{n=0}^{p-1} c_{n}\left(y-x_{*}\right)^{-n-1}, \\
c_{n} & =\lim _{y \rightarrow \infty}\left\{\left(y-x_{*}\right)^{n+1}\left[f(y)-\sum_{m=0}^{n-1} c_{m}\left(y-x_{*}\right)^{-m-1}\right]\right\}, n=0, \ldots, p-1 .
\end{aligned}
$$

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Examples:

$P=4 N$ (Sum of Green's functions for Laplace equation in 3D)

$$
\begin{aligned}
L_{P}\left(\mathbf{y} ; \mathbf{x}_{\bullet}\right) & =\sum_{i=1}^{N} \frac{Q_{i}}{4 \pi\left|\mathbf{y}-\mathbf{x}_{i}\right|}, \quad\left|\mathbf{x}_{i}-\mathbf{x} \cdot\right|>a, \\
F_{P}\left(\mathbf{y} ; \mathbf{x}_{*}\right) & =\sum_{i=1}^{N} \frac{Q_{i}}{4 \pi\left|\mathbf{y}-\mathbf{x}_{i}\right|}, \quad\left|\mathbf{x}_{i}-\mathbf{x}\right|>a, \\
\mathrm{C} & =\left(x_{11}, x_{12}, x_{13}, Q_{1}, \ldots, x_{N 1}, x_{N 2}, x_{N 3}, Q_{N}\right), \quad P=4 N .
\end{aligned}
$$

CSCAMM FAM04: 04/19/2004

Examples:	Consolidation Operation
$P=N$ (Regular solution of the Helmholtz equation in 3D)	
	Linear operators (easy summation)
$\mathrm{C}=\left(w_{1} \Psi\left(\mathbf{s}_{1}\right), \ldots, w_{N} \Psi\left(\mathbf{s}_{N}\right)\right)$	$R_{P 1}\left(\mathbf{y}, \mathbf{x}_{*}\right)+R_{P 2}\left(\mathbf{y} ; \mathbf{x}_{*}\right) \geq \mathrm{C}_{1}\left(\mathbf{x}_{*}\right)+\mathrm{C}_{2}(\mathbf{x} *)$.
	$R_{P 1}\left(\mathbf{y} ; \mathbf{x}_{*}\right)+R_{P 2}\left(\mathbf{y}, \mathbf{x}_{*}\right) \geq \mathrm{C}(\mathbf{x} *)=\mathrm{C}_{1}(\mathbf{x} *)[+] \mathrm{C}_{2}(\mathbf{x} *)$.
	Consolidation operation
	We usually focus on linear operators
CSCAMMEAM04:04/19/2004 © Duraiswami \& Gumerov, 2003-2004	CSCAMMEAM04:04/19/2004_© Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Translations: Multipole-to-local
$(S \mid R)\left(\mathbf{x}_{+2}-\mathbf{x}_{+1}\right)\left[\mathbf{C}_{1}\left(\mathbf{x}_{* 1}\right)\right]=\mathrm{C}_{2}\left(\mathbf{x}_{+2}\right)$.

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Translations: Multipole-to-multipole
$(S \mid S)\left(\mathbf{x}_{+2}-\mathbf{x}_{+1}\right)\left[\mathrm{C}_{1}\left(\mathbf{x}_{\star}\right)\right]=\mathrm{C}_{2}\left(\mathbf{X}_{+2}\right)$.

SLFMM in Terms of Representing Vectors:

Q Subdivide the computational domain into N_{b} boxes.
 finction $u_{i} \mathrm{P}\left(\mathbf{y}, \mathbf{x}_{i}\right)$ in the domain outer to the sphere $\Omega_{j}\left(x_{m}^{(0)}\right)$ (the sphere of radius a includes the box but
enclosed into the box neighborhood) and $x_{w n}^{(t .}$ is the center of the box containing x_{1}.

- For each source box S_{n} containing q_{n} sources $x_{i,} i=i_{1} \ldots, i_{\psi+,}$, obtain vector of length $P_{2}^{(*)}$ (consolidation of all sources inside the source box)

This vector represents potential due to all the sources inside the box in the domain outside the neighborhood of this
 does not contain S_{n}
where D_{n} is the vector of length $P_{3}^{(4)}$ representing function in the domain inner to the sphere of radius a centered at

For each receiver box R_{m} obtain vector (consolidation of all sources outside the receiver neighborhood
- For each receiver box evaluate the sum

$$
w\left(\mathbf{y}_{j}\right)=\sum_{\mathbf{x}_{i} \in \mathcal{F}_{f}} u_{i} \Phi\left(\mathbf{y}_{j} \mathbf{x}_{t}\right)+R_{R_{t}}\left(\mathbf{y}_{j}, \mathbf{y}_{\ldots}(\underline{)}), \quad \mathbf{y}_{j} \in R_{m} .\right.
$$

where $R_{P_{4}}\left(y_{y} y_{\ldots}^{(\prime)}\right)$ is the local function represented by $\mathrm{D}\left(y_{m}^{(2)}\right)$ and R_{m} is the m th receiver box

Translation Operator

Operator $\mathcal{T}(\mathbf{t}): \mathbb{F}(\boldsymbol{\Omega}) \rightarrow \mathbb{F}\left(\Omega^{I}\right), \Omega^{\prime} \subseteq \mathbb{R}^{d}, \quad \Omega \in \mathbb{R}^{d}$ is called translation operator corresponding to translation vector \mathbf{t}, if

$$
T(\mathbf{t})[\Phi(\mathbf{y})]=\Phi(\mathbf{y}+\mathbf{t}), \quad\left(\mathbf{y} \in \Omega, \quad \mathbf{y}+\mathbf{t} \in \mathbf{\Omega}^{\prime}\right)
$$

CSCAMM FAM04: 04/19/2004
Example of Translation Operator

$\mathrm{R} \mid \mathrm{R}$-reexpansion

Let $\mathbf{y}-\mathbf{x}_{*} \in \Omega_{r}\left(\mathbf{x}_{*}\right) \subset \mathbb{R}^{\alpha}, \quad \Omega_{r}\left(\mathbf{x}_{*}\right):\left|\mathbf{y}-\mathbf{x}_{*}\right|<r$, and $\left\{R_{n}\left(\mathbf{y}-\mathbf{x}_{*}\right)\right\}$ be a regular basis in $C(\boldsymbol{\Omega})$. Let $\mathbf{y}-\mathbf{x}_{*}+\mathbf{t} \in \Omega_{r}\left(\mathbf{x}_{*}\right)$ and

$$
R_{n}\left(\mathbf{y}-\mathbf{x}_{*}+\mathbf{t}\right)=\sum_{l=0}^{\infty}(R \mid R)_{l n}(\mathbf{t}) R_{l}\left(\mathbf{y}-\mathbf{x}_{*}\right)
$$

Coefficients $(R \mid R)_{l_{n}}(\mathbf{t})$ are called $R \mid R-$ reexpansion coefficients (regular-to-regular), and infinite matrix

$$
(\mathbf{R} \mid \mathbf{R})(\mathbf{t})=\left(\begin{array}{ccc}
(R \mid R)_{00} & (R \mid R)_{01} & \cdots \\
(R \mid R)_{10} & (R \mid R)_{11} & \cdots \\
\cdots & \cdots & \cdots
\end{array}\right)
$$

is called $R \mid R$ - reexpansion matrix.

Example of $\mathrm{R} \mid \mathrm{R}$-reexpansion
$R_{m}(\boldsymbol{x})=x^{m}$,
$R_{m}(x+t)=(x+t)^{m}=x^{m}+\binom{m}{1} x^{m-1} t+\ldots+\binom{m}{m-1} x t^{m-1}+t^{m}$
$=\sum_{l=0}^{m}\binom{m}{l} t^{l} x^{m-l}=\sum_{l=0}^{m}\binom{m}{l} t^{m-l} x^{l}=\sum_{l=0}^{m}\binom{m}{l} t^{m-l} R_{l}(x)$
$(R \mid R)_{l m}(t)=\left\{\begin{array}{cc} \binom{m}{l} t^{m-l}, & l \leqslant m \\ 0, & l>m . \end{array}\right.$
CSCAMM FAM04: 04/19/2004

$\mathrm{R} \mid \mathrm{R}$-translation operator

Translation operator $\mathcal{T}(\mathbf{t})$ which is represented in regular basis $\left\{R_{n}\left(\mathbf{y}-\mathbf{x}_{*}\right)\right\}$ by the $R \mid R$ - reexpansion matrix is called $\mathcal{R} \mid \mathcal{R}$-translation operator.

$$
\begin{gathered}
\mathcal{T}(\mathbf{t})[\Phi(\mathbf{y})]=\Phi(\mathbf{y}+\mathbf{t}) \\
(\mathcal{R} \mid \mathcal{R})(\mathbf{t})=\mathcal{T}(\mathbf{t}) .
\end{gathered}
$$

$$
(R \mid R)_{l m}(t)=\left\{\begin{array}{c}
\binom{m}{l} t^{m-l}, \quad l \leqslant m \\
0,
\end{array} \quad l>m .\right.
$$

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Reexpansion of the same function over shifted basis

$$
=\widehat{\mathbf{A}}\left(\mathbf{x}_{*}, \mathbf{t}\right) \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{*}-\mathbf{t}\right)
$$

Compact notation:

$$
\begin{gathered}
\Phi(\mathbf{y})=\sum_{n=0}^{\infty} A_{n}\left(\mathbf{x}_{*}\right) R_{n}\left(\mathbf{y}-\mathbf{x}_{*}\right)=\mathbf{A}\left(\mathbf{x}_{*}\right) \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{*}\right), \\
\Phi(\mathbf{y}+\mathbf{t})=\sum_{l=0}^{\infty} \widetilde{A_{l}}\left(\mathbf{x}_{*}, \mathbf{t}\right) R_{l}\left(\mathbf{y}-\mathbf{x}_{*}\right)=\widetilde{\mathbf{A}}\left(\mathbf{x}_{*}, \mathbf{t}\right) \circ \mathrm{R}\left(\mathbf{y}-\mathbf{x}_{*}\right)
\end{gathered}
$$

We have:

$$
\Phi(\mathbf{y})=\Phi((\mathbf{y}-\mathbf{t})+\mathbf{t})=\widetilde{\mathbf{A}}\left(\mathbf{x}_{*}, \mathbf{t}\right) \circ \mathbf{R}\left((\mathbf{y}-\mathbf{t})-\mathbf{x}_{*}\right)
$$

Also

$$
\Phi(\mathbf{y})=\mathbf{A}\left(\mathbf{x}_{*}\right) \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{*}\right)=\mathbf{A}\left(\mathbf{x}_{*}+\mathbf{t}\right) \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{*}-\mathbf{t}\right),
$$

so

$$
\mathbf{A}\left(\mathbf{x}_{*}+\mathbf{t}\right)=\widetilde{\mathbf{A}}\left(\mathbf{x}_{*}, \mathbf{t}\right)=(\mathbf{R} \mid \mathbf{R})(\mathbf{t}) \mathbf{A}\left(\mathbf{x}_{*}\right)
$$

$$
\begin{gathered}
R_{n}(y+t)=(y+t)^{n}=\sum_{m=0}^{n} \frac{n!}{m!(n-m)!} t^{n-m,} y^{m}=\sum_{m=0}^{n} \frac{n!}{m!(n-m)!} t^{t n-m} R_{m}(y) . \\
(R \mid R)_{m n}(t)=\left\{\begin{array}{cccc}
0, & m>n \\
\frac{n!}{m!(n-m)!} t^{n-m}, & m & m n
\end{array}\right. \\
(\mathbf{R} \mid \mathbf{R})(t)=(R \mid R)_{m n}(t)=\left(\begin{array}{lllll}
1 & t & t^{2} & t^{3} & \ldots \\
0 & 1 & 2 t & 3 t^{2} & \ldots \\
0 & 0 & 1 & 3 t & \ldots \\
0 & 0 & 0 & 1 & \ldots \\
\cdots & \cdots & \cdots & \cdots & \ldots
\end{array}\right)
\end{gathered}
$$

CSCAMMEAM04: 04/19/2004_© Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

$$
\begin{aligned}
& S_{n}(y+t)=(y+t)^{-n-1}=y^{-n-1}\left(1+\frac{t}{y}\right)^{-n-1}=\sum_{m=n}^{\infty} \frac{(-1)^{m-n} m!}{n!(m-n)!} t^{m-n} S_{m}(y), \\
& (S \mid S)_{m n}(t)=\left\{\begin{array}{c}
0, m<n \\
\frac{(-1)^{m-n_{m}} t^{m-n}}{m!(m-n)!} t^{m-n}, m \geqslant n .
\end{array}\right. \\
& (\mathbf{S} \mid \mathbf{S})(t)=(S \mid S)_{m}(t)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \ldots \\
-t & 1 & 0 & 0 & \ldots \\
t^{2} & -2 t & 1 & 0 & \ldots \\
-t^{3} & 3 t^{2} & -3 t & 1 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \Phi\left(y, x_{i}\right)=\frac{1}{y-x_{i}} . \\
& \text { Example } \\
& \left|y-x_{*}\right|<\left|x_{i}-x_{*}\right|: \\
& \text { R-expansion } \\
& \Phi\left(y, x_{i}\right)=\sum_{m=0}^{\infty} a_{m}\left(x_{i}, x_{*}\right) R_{m}\left(y-x_{*}\right), \\
& a_{m}\left(x_{i}, x_{*}\right)=-\left(x_{i}-x_{*}\right)^{-m-1}, \quad m=0,1, \ldots, \\
& R_{m}\left(y-x_{*}\right)=\left(y-x_{*}\right)^{m}, \quad m=0,1, \ldots \\
& \left|y-x_{*}\right|>\left|x_{i}-x_{*}\right|: \\
& \text { S-expansion } \\
& \Phi\left(y, x_{i}\right)=\sum_{m=0}^{\infty} b_{m}\left(x_{i}, x_{*}\right) S_{m}\left(y-x_{*}\right), \\
& b_{m}\left(x_{i}, x_{*}\right)=\left(x_{i}-x_{*}\right)^{m}, \quad m=0,1, \ldots, \\
& S_{m}\left(y-x_{*}\right)=\left(y-x_{*}\right)^{-m-1}, \quad m=0,1, \ldots
\end{aligned}
$$

S\|R-operator $\begin{aligned} S_{n}(y+t)= & (t+y)^{-n-1}=t^{-n-1}\left(1+\frac{y}{t}\right)^{-n-1}=\sum_{m=0}^{\infty} \frac{(-1)^{m}(m+n)!}{m!n!} t^{-n-m-1} y^{m} \\ = & \sum_{m=0}^{\infty} \frac{(-1)^{m}(m+n)!}{m!n!} t^{-n-m-1} R_{m}(y) . \\ & (S \mid R)_{m n}(t)=\frac{(-1)^{m}(m+n)!}{m!n!t^{n+m+1}}, \\ & (\mathbf{S} \mid \mathbf{R})(t)=\left(\begin{array}{cccc} t^{-1} & t^{-2} & t^{-3} & \ldots \\ -t^{-2} & -2 t^{-3} & -3 t^{-4} & \ldots \\ t^{-3} & 3 t^{-4} & 6 t^{-5} & \ldots \\ \cdots & \cdots & \cdots & \cdots \end{array}\right) \end{aligned}$
CSCAMM FAM04: 04/19/2004 © Duraiswami \& Gumerov, 2003-2004

Renormalized R-functions

$$
\tilde{R}_{n}(y)=\frac{y^{y}}{n!} .
$$

Then

$$
\begin{aligned}
\widetilde{R}_{n}(y+t)= & \frac{1}{n!}(y+t)^{n}=\frac{1}{n!} \sum_{m-0}^{n} \frac{n!}{m!(n-m)!} t^{t-m y^{n}}=\sum_{m-0}^{n} \tilde{R}_{n-m}(t) \tilde{R}_{m}(y) . \\
& (\widetilde{R} \tilde{R})_{m n}(t)=\left\{\begin{array}{c}
0, m>n \\
\frac{1}{(1-m)!} t^{t-m}=\widetilde{R}_{n-m}(t), \quad m \leqslant n
\end{array}\right.
\end{aligned}
$$

Translation Matrix:

$$
\begin{aligned}
& \text { n Matrix: } \quad(\widetilde{\mathbb{R}} \widetilde{\mathbb{R}})(t)=(\widetilde{R} \widetilde{R})_{m n}(t)=\left(\begin{array}{ccccc}
1 & t & \frac{t^{2}}{2} & \frac{t^{3}}{6} & \cdots \\
0 & 1 & t & \frac{t^{2}}{2} & \cdots \\
0 & 0 & 1 & t & \cdots \\
0 & 0 & 0 & 1 & \cdots
\end{array}\right) \text { Toeplitz } \\
& \text { 04: 04/19/2004 }
\end{aligned}
$$

Renormalized S-functions

$$
\widetilde{S}_{n}(y)=\frac{(-1)^{a} n!}{y^{n+1}}
$$

$\widetilde{S}_{n}(y+t)=(-1)^{n} n!(y+t)^{-n-1}=(-1)^{n} n!\sum_{m=n}^{\infty} \frac{(-1)^{m-n} m!(m-n)!}{n!} t^{m-n} y^{-n-1}=\sum_{m=n}^{\infty} \widetilde{R}_{m-n}(t) \widetilde{S}_{m}(y)$.

$$
(\widetilde{S} \mid \widetilde{S})_{m m}(t)=\left\{\begin{array}{c}
0, m<n \\
\frac{1}{(m-n)!} t^{n-n}=\widetilde{R}_{m-n}(t), \quad m \geqslant n
\end{array}\right.
$$

Renormalized S-functions

$$
\begin{gathered}
\widetilde{S}_{n}(y+t)=\sum_{m=n}^{\infty} \widetilde{R}_{m-n}(y) \widetilde{S}_{m}(t)=\sum_{m=0}^{\infty} \widetilde{S}_{m+n}(t) \widetilde{R}_{m}(y) \\
(\widetilde{S} \mid \widetilde{R})_{m n}(t)=\widetilde{S}_{m+n}(t)
\end{gathered}
$$

Translation Matrix:

$$
(\widetilde{\mathbf{S}} \widetilde{\mathbf{R}})(t)=(\widetilde{S} \mid \widetilde{R})_{m n}(t)=\left(\begin{array}{ccccc}
-t^{-2} & 2 t^{-3} & -6 t^{-4} & 24 t^{-5} & \ldots \\
2 t^{-3} & -6 t^{-4} & 24 t^{-5} & -120 t^{-6} & \ldots \\
-6 t^{-4} & 24 t^{-5} & -120 t^{-6} & 720 t^{-7} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

CSCAMM FAM04: 04/19/2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004. translations can be performed with complexity $\mathrm{O}(p \log p)$.

But we look for something faster.

Theoretical limit for translation of vector of length p is $O(p)$.

ONLY SPARSE TRANSLATION MATRIX CAN PROVIDE SUCH COMPLEXITY

Representations Based on Signature Functions

Definition

$$
\Phi(y)=\sum_{m=0}^{\infty} C_{m} \widetilde{R}_{m}(y)
$$

then the Signature Function of $\Phi(y)$ is a 2π-periodic funcion

$$
\Phi^{*}(s)=\sum_{m=0}^{\infty} C_{m} e^{i m s}
$$

Definition

$$
\Phi(y)=\sum_{m=0}^{\infty} C_{m} \widetilde{S}_{m}(y)_{2}
$$

then the Signature Function of $\Phi(y)$ is a 2π-periodic funcion

> We assume that series for SF converge. This is always true for finite series,
$C_{m}=0, m>p-1$.

$$
\Phi^{*}(s)=\sum_{m=0}^{\infty} C_{m} e^{-i m s}
$$

Integral Representation of Regular Functions

$$
C_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi^{*}(s) e^{-i m s} d s . \longleftarrow \quad \begin{aligned}
& \text { Property of } \\
& \text { Fourier coef }
\end{aligned}
$$

Fourier coefficients
We have then the following representation of $\Phi(y)$

$$
\Phi(y)=\sum_{m=0}^{\infty} \widetilde{R}_{m}(y) \frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi^{*}(s) e^{-i m s} d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi^{*}(s) \sum_{m=0}^{\infty} \widetilde{R}_{m}(y) e^{-i m s} d s
$$

Consider

$$
\sum_{m=0}^{\infty} \widetilde{R}_{m}(y) e^{-i m s}=\sum_{m=0}^{\infty} e^{-i m s} \frac{y^{m s}}{m!}=\sum_{m=0}^{\infty} \frac{\left\langle y e^{-i s}\right)^{m}}{m!}=e^{\nu e^{-i s}}
$$

So

$$
\Phi(y)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\nu e^{-i s}} \Phi^{*}(s) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Lambda_{r}(y ; s) \Phi^{*}(s) d s
$$

where
$\Lambda_{r}(y, s)=e^{y e^{-i s}} . \quad \longleftarrow \quad$ Regular kernel
CSCAMM FAM04: 04/19/2004 © Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Integral Representation of Regular Basis Functions

$$
\text { For } \Phi(y)=\widetilde{R}_{m}(y) \text { we have }
$$

$$
\Phi(y)=\widetilde{R}_{m}(y)=\sum_{m^{\prime}=0}^{\infty} C_{m^{\prime}} \widetilde{R}_{m^{\prime}}(y), \quad C_{m^{\prime}}=\hat{\delta}_{m n^{\prime}}
$$

Therefore the SF for this function is

$$
\Phi^{*}(s)=\sum_{m^{\prime}=0}^{\infty} C_{m} e^{i m^{\prime} m^{\prime} s}=\sum_{m^{\prime}=0}^{\infty} \delta_{m m^{\prime}} e^{i m^{\prime} s}=e^{i m s}
$$

Then

$$
\widetilde{R}_{m}(y)=\Phi(y)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\nu-k s} \Phi^{*}(s) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\nu e^{-k}} e^{i m s} d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Lambda_{r}(y ; s) e^{i m s} d s .
$$

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Integral Representation of Singular Functions

$$
\begin{gathered}
\Phi^{(p)}(y)=\sum_{m=0}^{p-1} C_{m} \widetilde{S}_{m}(y), \quad \Phi^{(p) *}(s)=\sum_{m=0}^{p-1} C_{m} e^{-i m s} . \\
C_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi^{(p) *}(s) e^{i m s} d s . \quad \text { Property of } \\
\text { Fourier coefficients }
\end{gathered}
$$

We have then the following representation of $\Phi(y)$:

$$
\Phi^{(p)}(y)=\sum_{m=0}^{p-1} \widetilde{S}_{m}(y) \frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi^{(p) *}(s) e^{i m s} d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi^{(p) *}(s) \sum_{m=0}^{p-1} \widetilde{S}_{m}(y) e^{i m s} d s
$$

Then

$$
\begin{gathered}
\Phi^{(p)}(y)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Lambda_{s}^{(p)}(y, s) \Phi^{(p) *}(s) d s, \\
\Lambda_{s}^{(p)}(y, s)=\sum_{m=0}^{p-1} \widetilde{S}_{m}(y) e^{i m s}=\sum_{m=0}^{p-1} e^{i m s} \frac{(-1)^{m} m!}{y^{m+1}} \cdot
\end{gathered}
$$

CSCAMM FAM04: 04/19/2004 © Duraiswami \& Gumerov, 2003-2004

Integral Representation of Singular Basis Functions
For $\Phi(y)=\widetilde{S}_{m}(y)$ we have

$$
\Phi^{(p)}(y)=\widetilde{S}_{m}(y)=\sum_{m^{\prime}-0}^{p-1} C_{m^{\prime}} \widetilde{S}_{m^{\prime}}(y), \quad C_{m^{\prime}}=\delta_{m m^{\prime}}, \quad p>m .
$$

Therefore the SF for this function is

$$
\Phi^{(p) *}(s)=\sum_{m^{\prime}=0}^{\infty} C_{m^{\prime}} \cdot e^{-i m m^{\prime} s}=\sum_{m^{\prime}=0}^{\infty} \delta_{m m^{\prime}} e^{-m m^{\prime} s}=e^{-i m s}, \quad p>m
$$

Then

$$
\tilde{S}_{m}(y)=\Phi^{(p)}(y)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Lambda_{s}^{(p)}(y, s) \Phi^{(p) *}(s) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Lambda_{s}^{(p)}(y, s) e^{-i m s} d s,
$$

$$
m<p
$$

$\mathrm{R} \mid \mathrm{R}$-translation of the Signature Function
$\mathcal{T}(t)[\Phi(y)]=\Phi(y+t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{(y+t) e^{-j s}} \Phi^{*}(s) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{y \varepsilon^{-i s}} e^{t e^{-i s}} \Phi^{*}(s) d s$
$=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Lambda_{r}(y, s) \Lambda_{r}(t, s) \Phi^{*}(s) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Lambda_{r}(y, s) \hat{\Phi}^{*}(s, t) d s$.

$$
(\mathcal{R} \mid \mathcal{R})(t)\left[\Phi^{*}(s)\right]=\widehat{\Phi}^{*}(s, t)=\Lambda_{r}(t, s) \Phi^{*}(s) .
$$

So the R|R translation of the SF means simply multiplication of the SF by the regular kernel !

S|R-translation of the Signature Function

$$
\begin{aligned}
& \Phi^{(p)}(y+t)=\sum_{m=0}^{p-1} \widehat{C}_{m} \widetilde{S}_{m}(y)=\sum_{m=0}^{p-1} \sum_{n=0}^{\infty}(\widetilde{S} \widetilde{S})_{m n}(t) C_{n} \widetilde{S}_{m}(y) \\
& =\sum_{m=0}^{p-1} \sum_{n=0}^{p-1} \widetilde{R}_{m-n}(t) C_{n} \widetilde{S}_{m}(y)=\sum_{m=0}^{p-1} \sum_{n=0}^{p-1} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{t_{e-i s}^{s-s}} e^{i(m-n) s} d s C_{n} \widetilde{S}_{m}(y) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{t e^{-\tau s}} \sum_{n=0}^{p-1} C_{n} e^{-i n s} \sum_{m=0}^{p-1} \widetilde{S}_{m}(y) e^{m s s} d s
\end{aligned}
$$

$$
\begin{aligned}
& \text { function }
\end{aligned}
$$

So

$$
(\mathcal{S} \mid \mathcal{S})(t)\left[\Phi^{(p) *}(s)\right]=\hat{\Phi}^{(p) *}(s, t)=e^{t e^{-i s}} \Phi^{(p) *}(s)=\Lambda_{r}(t, s) \Phi^{(p) *}(s) .
$$

In case $|t|>|y|$ we have

$$
\Phi^{(p)}(y+t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{\nu e^{-s s}} \Lambda_{s}^{(p)}(t, s) \Phi^{(p) *}(s) d s, \quad|t|>|y| .
$$

This is a representation of the regular function. Therefore,

$$
(\mathcal{S} \mid \mathcal{R})(t)\left[\Phi^{(p) *}(s)\right]=\widehat{\Phi}^{(p) *}(s, t)=\Lambda_{s}^{(p)}(t, s) \Phi^{(p) *}(s)
$$

So the $\mathrm{S} \mid \mathrm{S}$ translation of the SF means multiplication of the SF by the singular kernel.

So the $\mathrm{S} \mid \mathrm{S}$ translation of the SF means multiplication of the

© Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Content

- Introduction
- Hierarchical Space Subdivision with 2d-Trees
- Hierarchical Indexing System - Parent \& Children Finding
- Binary Ordering
- Spatial Ordering Using Bit Interleaving \square Neighbor \& Box Center Finding
- Spatial Data Structuring
- Threshold Level of Space Subdivision
- Operations on Sets

Reference:

N.A. Gumerov, R. Duraiswami \& E.A. Borovikov

Data Structures, Optimal Choice of Parameters, and Complexity Results for Generalized Multilevel Fast Multipole Methods in d Dimensions

UMIACS TR 2003-28, Also issued as Computer Science Technical Report CS-TR-\# 4458. Volume 91 pages.

University of Maryland, College Park, 2003.

AVAILABLE ONLINE VIA http://www.umiacs.umd.edul-qumerov
http://www.umiacs.umd.edu/~ramani
CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Introduction
© Duraiswami \& Gumerov, 2003-2004
,

FMM Data Structures (2)

- Approaches include:
\square Data preprocessing
- Sorting
- Building lists (such as neighbor lists): requires memory,
potentially can be avoided;
- Building and storage of trees: requires memory, potentially can be avoided;
\square Operations with data during the FMM algorithm execution:
- Operations on data sets;
- Search procedures.
- Preferable algorithms:
\square Avoid unnecessary memory usage;
\square Use fast (constant and logarithmic) search procedures;
\square Employ bitwise operations;
\square Can be parallelized.
- Tradeoff Between Memory and Speed

Historically:

- Binary trees (1D), Quadtrees (2D), Octrees (3D);
- We will consider a concept of 2d-tree.
$\square \mathrm{d}=1$ - binary;
$\square \mathrm{d}=2$ - quadtree;
$\square \mathrm{d}=3$ - octree;
d $=4$ - hexatree;
\square and so on..

Hierarchy in $2^{\text {d }}$-tree

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Hierarchical Indexing

Hierarchical Indexing in $2^{\text {d}}$-trees. Index at the Level.

- Indexing in quad-tree

The large black box has the indexing string $(2,3)$. So its index is $23_{4}=11_{10}$.

The small black box has the indexing string $(3,1,2)$. So its index is $312_{4}=54_{10}$.

In general: Index (Number) at level l is:
CSCA Number $=\left(2^{d}\right)^{l-1} \cdot N_{1}+\left(2^{d}\right)^{l-2} \cdot N_{2}+\ldots+2^{d} \cdot N_{l-1}+N_{l \cdot-2004}$

Universal Index (Number)

The large black box has the indexing string $(2,3)$. So its index is $23_{4}=11_{10}$ at level 2

The small gray box has the indexing string $(0,2,3)$. So its index is $23_{4}=11_{10}$ at level 3.

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Parent Index

Parent's indexing string:

$$
\operatorname{Parent}\left(N_{1}, N_{2}, \ldots, N_{l-1}, N_{l}\right)=\left(N_{1}, N_{2}, \ldots, N_{l-1}\right)
$$

Parent's index:
Parent $($ Number $)=\left(2^{d}\right)^{l-2} \cdot N_{1}+\left(2^{d}\right)^{l-3} \cdot N_{2}+\ldots+N_{l-1}$.

Parent index does not depend on
the level of the box! E.g. in the quad-tree at any level
$\operatorname{Parent}\left(11_{10}\right)=\operatorname{Parent}\left(23_{4}\right)=2_{4}=2_{10}$.
Parent's universal index:
$\operatorname{Parent}(($ Number, $l))=($ Parent $($ Number $), l-1)$.
Algorithm to find the parent number: Parent(Number) $=\left[\right.$ Number $\left./ 2^{d}\right]$

Children Indexes

Children indexing strings:
Children $\left(N_{1}, N_{2}, \ldots, N_{l-1}, N_{l}\right)=\left\{\left(N_{1}, N_{2}, \ldots, N_{l-1}, N_{l}, N_{l+1}\right)\right\}, \quad N_{l+1}=0, \ldots, 2^{d}-1$.
Children indexes:
Zhildren(Number $)=\left\{\left(2^{d}\right)^{l} \cdot N_{1}+\left(2^{d}\right)^{l-1} \cdot N_{2}+\ldots+\left(2^{d}\right) \cdot N_{l}+N_{l+1}\right\}, \quad N_{l+1}=0, \ldots, 2^{d}-1$.
Children indexes do not depend on the level of the box! E.g. in the quad-tree at any level:
Children $\left(11_{10}\right)=$ Children $\left(23_{4}\right)=\left\{230_{4}, 231_{4}, 232_{4}, 233_{4}\right\}=\left\{44_{10}, 45_{10}, 46_{10}, 47_{10}\right\}$
Children universal indexes:
Children $(($ Number,$l))=($ Children(Number $), l+1)$.
Algorithm to find the children numbers:
Children $($ Number $)=\left\langle 2^{d} \cdot\right.$ Number $\left.+j\right\rangle, j=0, \ldots, 2^{d}-1$,
CSCAMM FAM04: 04/19/2004 © Duraiswami \& Gumerov, 2003-2004

A couple of examples:

Problem: Using the above numbering system and decimal numbers find parent box number for box \#5981 in oct-tree.

Solution: Find the integer part of division of this number by 8. $[5981 / 8]=747$ Answer: \#747.

Problem: Using the above numbering system and decimal numbers find children box numbers for box \#100 in oct-tree

Solution: Multiply this number by 8 and add numbers from 0 to 7 .
Answer: \#\#800, 801, 802, 803, 804, 805, 806, 807.

Can it be even faster?

YES!
USE BITSHIFT PROCEDURES!
(HINT: Multiplication and division by 2^{d} are equivalent to d-bit shift.)

CSCAMM FAM04:04/19/2004
© Duraiswami \& Gumerov, 2003-2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Binary Ordering

CSCAMM FAM 04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

All $\bar{x} \in[0,1]$ naturally ordered and can be represented in decimal system as

$$
\bar{x}=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{10}, \quad a_{j}=0, \ldots, 9 ; \quad j=1,2, \ldots
$$

Note that the point $\bar{x}=1$ can be written not only $\bar{x}=1.0000 \ldots$, but also as

$$
\bar{x}=1=(0.999999 \ldots)_{10}
$$

We also can represent any point $\bar{x} \in[0,1]$ in binary system as

$$
\bar{x}=\left(0 . b_{1} b_{2} b_{3} \ldots\right)_{2}, \quad b_{j}=0,1 ; \quad j=1,2, \ldots
$$

By the same reasons as for decimal system the point $\bar{x}=1$ can be written as

$$
\bar{x}=1=(0.111111 \ldots)_{2}
$$

Finding the index of the box containing a given point

		Box Size (dec)	Box Size (bin)
	0	1	1
	1	0.5	0.1
	2	0.25	0.01
	3	0.125	0.001
Level 1 ${ }^{\left(0.0 b_{1} b_{2}\right.}$ Level 2	$\begin{gathered} \ldots \\ o x((0)) \end{gathered}$	$\left(0.1 b_{1} b_{2} b_{3} .\right.$	$y_{2} \in \operatorname{Box}((1)),$
	$\begin{aligned} & 3 \ldots)_{2} \in \\ & 3 \ldots)_{2} \in \end{aligned}$	$\begin{aligned} & \operatorname{Box}((0,0)), \\ & \operatorname{Box}((1,0)), \end{aligned}$	$\begin{aligned} & \left.0.01 b_{1} b_{2} b_{3} \ldots\right)_{2} \\ & \left.0.11 b_{1} b_{2} b_{3} \ldots\right)_{2} \end{aligned}$
Level l (0	$\begin{gathered} \forall b_{j}= \\ b_{2} b_{3} \ldots \end{gathered}$	$\begin{aligned} & 0,1 ; j=1,2, . \\ & 2_{2} \in \operatorname{Box}\left(\left(N_{1}, N_{2}\right.\right. \end{aligned}$	$$

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Finding the index of the box containing a
given point (2)
$\left(0 . N_{1} N_{2} \ldots N_{l} b_{1} b_{2} b_{3} \ldots\right)_{2} \rightarrow\left(N_{1} N_{2} \ldots N_{l} . b_{1} b_{2} b_{3} \ldots\right)_{2} ; \quad N_{1} N_{2} \ldots N_{l}=\left[\left(N_{1} N_{2} \ldots N_{l} . b_{1} b_{2} b_{3} \ldots\right)_{2}\right]$.

Finding the center of a given box.

For box number Number at level l the left boundary can be found by l-bit shift:

$$
\text { Number }=\left(N_{1} N_{2} \ldots N_{l}\right)_{2} \rightarrow\left(0 . N_{1} N_{2} \ldots N_{l}\right)_{2},
$$

Add 1 as an extra digit (half of the box size), so we have for the center of the box at level l :

$$
\bar{x}_{c}(\text { Number }, l)=\left(0 . N_{1} N_{2} \ldots N_{l} 1\right)_{2}
$$

This procedure also can be written in the form that does not depend on the counting system:

$$
\bar{x}_{c}(\text { Number }, l)=2^{-l} \cdot \text { Number }+2^{-l-1}=2^{-l} \cdot\left(\text { Number }+2^{-1}\right)
$$

since addition of one at position $l+1$ after the point in the binaty system is the same as addition of 2^{-l-1}.

Problem: Find the center of box \#31 (decimal) at level 5 of the binary tree.
Solution: We have $\overline{\boldsymbol{x}}_{c}(31,5)=2^{-5} \cdot(31+0.5)=0.984375$.
Answer: 0.984375.

Neighbor finding

Due to all boxes are indexed consequently:
Neighbor((Number,level))=Number ± 1

If the neighbor number at level l equal 2^{l} or -1 we drop this box from the neighbor list.
Problem: Find all neighbors of box $\# 31$ (decimal) at level 5 of the binary tree.
Spatial Ordering Using Bit Interleaving
Problem: Find all neighbors of box \#31 (decimal) at level 5 of the binary tree.
Solution: The neighbors should have numbers $31-1=30$ and $31+1=32$. However,
$32=2^{5}$, which exceeds the number allowed for this level. Thus, only box \#30 is the
neighbor.
Answer: \#30.

Bit Interleaving

Coordinates of a point $\overline{\mathbf{x}}=\left(\bar{x}_{1}, \ldots, \bar{x}_{d}\right)$ in the d-dimensional unit cube can be represented in binary form

$$
\bar{x}_{k}=\left(0 . b_{k 1} b_{k 2} b_{k 3} \ldots\right)_{2}, \quad b_{k j}=0,1 ; \quad j=1,2, \ldots, \quad k=1, \ldots, d .
$$

Instead of having d numbers characterizing each point we can form a single binary number that represent the same point by ordered mixing of the digits in the above binary representation (this is also called bit interleaving), so we can write:

$$
\overline{\mathbf{x}}=\left(0 . b_{11} b_{21} \ldots b_{d 1} b_{12} b_{22} \ldots b_{d 2} \ldots b_{1 j} b_{2 j} \ldots b_{d j} \ldots\right)_{2} .
$$

This number can be rewritten in the system with base 2^{d}

$$
\overline{\mathbf{x}}=\left(0 . N_{1} N_{2} N_{3} \ldots N_{j} \ldots\right)_{2^{d}}, \quad N_{j}=\left(b_{1 j} b_{2 j} \ldots b_{d j}\right)_{2}, \quad j=1,2, \ldots, \quad N_{j}=0, \ldots, 2^{d}-1 .
$$

This maps $\mathbf{R}^{\mathrm{d}} \rightarrow \mathbf{R}$, where coordinates are ordered naturally!

Convention for Children Ordering.

Any binary string of length d can be converted into a a single number (binary or in some other counting system, e.g. with the base 2^{d}):

$$
\left(b_{1}, b_{2}, \ldots, b_{d}\right) \rightarrow\left(b_{1} b_{2} \ldots b_{d}\right)_{2}=N_{2^{d}}
$$

This provides natural numbering of 2^{d} children of the box.:
$\overline{\mathbf{x}}=\left(0 . b_{11} b_{21} \ldots b_{d 1} b_{12} b_{22} \ldots b_{d 2} \ldots b_{1 j} b_{2 j} \ldots b_{d j \ldots} \ldots\right)_{2} \in \operatorname{Box}\left(\left(b_{11} b_{21} \ldots b_{d 1}\right)_{2}\right)=\operatorname{Box}\left(\left(N_{1}\right)_{2^{d}}\right)$,

Example of Bit Interleaving.

Consider 3-dimensional space, and an octree.

$\mathrm{x}_{2}=0.1110000110 \mid 011111 \ldots$

$\mathbf{x}=(0.365114301512671 \ldots)_{8}$
$x=\left(0 .\left|01^{\circ}\right| 11^{*}\left|0^{\circ} 1^{\circ}\right| 00^{\circ}\left|10^{\circ}\right| 011^{\circ}\left|0^{*}\right| 101|010| 110|111| \ldots\right)_{2}$

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Finding the index of the box containing a given point.

Level 1:

Let us use 2^{d}-based counting system. Then we can find the box containing a given point at Level l :
$\left(0 . N_{1} N_{2} \ldots N_{l} c_{1} c_{2} c_{3} \ldots\right)_{2^{d}} \in \operatorname{Box}\left(\left(N_{1}, N_{2}, \ldots, N_{l}\right)_{2^{d}}\right), \quad \forall c_{j}=0, \ldots, 2^{d}-1 ; \quad j=1,2, \ldots$
Therefore to find the number of the box at level l to which the given point belongs we need simply shift the 2^{d} number representing this point by l positions and take the integer part of this number:
$\left(0 . N_{1} N_{2} \ldots N_{l} c_{1} c_{2} c_{3} \ldots\right)_{2^{d}} \rightarrow\left(N_{1} N_{2} \ldots N_{l} \cdot c_{1} c_{2} c_{3} \ldots\right)_{2^{d}} ; \quad N_{1} N_{2} \ldots N_{l}=\left[\left(N_{1} N_{2} \ldots N_{l} \cdot b_{1} b_{2} b_{3} \ldots\right)_{2^{d}}\right]$.

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Finding the index of the box containing a given point. Algorithm and Example.

This procedure also can be performed in binary system by $d \cdot l$ bit shift:
$\left(0 . b_{11} b_{21} \ldots b_{d 1} b_{12} b_{22} \ldots b_{d 2} \ldots b_{11} b_{21} \ldots b_{d l} b \ldots\right)_{2} \rightarrow\left(b_{11} b_{21} \ldots b_{d 1} b_{12} b_{22} \ldots b_{d 2} \ldots b_{11} b_{21} \ldots b_{d l} . b \ldots\right)_{2} ;$

$$
\text { Number }=\left(b_{11} b_{21} \ldots b_{d 1} b_{12} b_{22} \ldots b_{d 2} \ldots b_{1} b_{21} \ldots b_{d l}\right)_{2} .
$$

In arbitrary counting system:

$$
(\text { Number, } l)=\left[2^{d l} \cdot \overline{\mathbf{x}}\right]
$$

Problem: Find decimal numbers of boxes at levels 3 and 5 of the oct-tree containing point $\overline{\mathbf{x}}=(0.7681,0.0459,0.3912)$.

Solution: First we convert the coordinates of the point to binary format, where we can keep only 5 digits after the point (maximum level is 5), so $\overline{\mathbf{x}}=(0.11000,0.00001,0.01100)_{2}$ Second, we form a single mixed number $\overline{\mathbf{x}}=0.100101001000010_{2}$. Performing $3 \cdot 3=9$ bit shift and taking integer part we have (Number, 3) $=100101001_{2}=297$. Performing $3 \cdot 5=15$ bit shift we obtain (Number, 5$)=100101001000010_{2}=19010$.

Answer: \#297 and \#19010
CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Bit deinterleving (2). Example.

Bit Deinterleaving

Convert the box number at level l into binary form

$$
\text { Number }=\left(b_{11} b_{21} \ldots b_{d 1} b_{12} b_{22} \ldots b_{d 2} \ldots b_{11} b_{21} \ldots b_{d l}\right)_{2}
$$

Then we decompose this number to d numbers that will represent d coordinates:

$$
\begin{aligned}
\text { Number }_{1} & =\left(b_{11} b_{12} \ldots b_{1 l}\right)_{2} \\
\text { Number }_{2} & =\left(b_{21} b_{22} \ldots b_{2 l}\right)_{2} \\
\ldots & \\
\text { Number }_{d} & =\left(b_{d 1} b_{d 2} \ldots b_{d l}\right)_{2} .
\end{aligned}
$$

Number $_{1}=\left(\boldsymbol{b}_{11} \boldsymbol{b}_{12} \ldots \boldsymbol{b}_{17}\right)_{2}$.

Neighbor Finding

Step 1: Deinterleaving

$$
\text { Number } \rightarrow\left\{\text { Number }_{1}, \ldots, \text { Number }_{d}\right\}
$$

Step 2: Shift of the coordinate numbers

$$
\text { Number }_{k}^{+}=\text {Number }_{k}+1, \quad \text { Number } r_{k}^{-}=\text {Number }_{k}-1, \quad k=1, \ldots, d_{3}
$$

and formation of sets:

$$
\boldsymbol{s}_{k}=\left\{\begin{array}{c}
\left\{\text { Number }_{k}^{-}, \text {Number }_{k}, \text { Number }_{k}^{+}\right\}, \quad \text { Number }_{k} \neq 0,2^{l}-1 \\
\left\{\text { Number }_{k}, \text { Number }_{k}^{+}\right\}, \quad \text { Number } \\
k
\end{array}=0 . \quad k=1, \ldots, d .\right.
$$

The set of neighbor generating numbers is then

$$
n=\left(n_{1}, \ldots, n_{d}\right), \quad n_{k} \in s_{k}, \quad k=1, \ldots, d .
$$

where each n_{k} can be any element of s_{k}, except of the case when all $n_{k}=$ Number $_{k}$ simultaneously for all $k=1, \ldots, d$, since this case corresponds to the box itself.
CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Spatial Data Structuring

Example of Neighbor Finding

1101,11000,11001,1111,11011,100101,110000,110001

© Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Threshold Level

Spatial Data Sorting

Consider data collection \mathbf{C}. Each point can be then indexed (or numbered)

$$
\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{N}\right), \quad v_{i}=\operatorname{Number}\left(\mathbf{x}_{i}, L\right), \quad i=1, \ldots, N,
$$

We call level $L_{t h}$ (C) "threshold level' of data collection C if the maximum number of data points in a box for any level of subdivision $L>L_{t h}(\mathrm{C})$ is the same as for $L_{t h}(\mathrm{C})$ and differs from $L_{t h}(\mathbf{C})$ for any $L<L_{t h}(\mathbf{C})$.

Note: in case if C is a data set of power $N \geqslant 2$, then at level $L_{t h}(\mathrm{C})$ we will have maximum one data point per box, and at $L<L_{t h}$ (C) there exists at least 1 box containing 2 or more data points.
where Number can be determined using the algorithm described in the previous sections. The array v then can be sorted for $O(N \log N)$ operations:

$$
\left(v_{1}, v_{2}, \ldots, v_{N}\right) \rightarrow\left(v_{t_{1}}, v_{i_{2}}, \ldots, v_{t N}\right), \quad v_{t_{1}} \leqslant v_{t_{2}} \leqslant \ldots \leqslant v_{t N}
$$

using standart sorting algorithms. These algorithms also return the permutation index (other terminology can be permutation vector or pointer vector) of length N :

$$
\text { ind }=\left(i_{1}, i_{2}, \ldots, i_{N}\right),
$$

that can be stored in the memory. In terms of memory usage the array v should not be rewritten and stored again, since ind is a pointer and

$$
\mathbf{v}(i)=v_{i}, \quad \operatorname{ind}(j)=i_{j}, \quad \mathbf{v}(\operatorname{ind}(j))=\mathbf{v}\left(i_{j}\right)=v_{i j}, \quad i, j=1, \ldots, N,
$$

so
$v($ ind $)=\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{\text {in }}\right)$.

Spatial Data Sorting (2)

After data sorting we need to
find the maximum level of space subdivision that will be employed

In Multilevel FMM two following conditions can be mainly considered:

- At level $L_{\text {max }}$ each box contains not more
than s points (s is called clustering or grouping parameter)
- At level $L_{\text {max }}$ the neighborhood of each box contains not more than q points.

Before sorting represent your data with maximum number of bits available (or intended to use). This corresponds to maximum level $L_{\text {available }}$ available (say [$L_{\text {available }}$ $=$ BitMax/d].

- In the hierarchical 2^{d}-tree space subdivision the sorted list will remain sorted at any level $L<L_{\text {available }}$. So the data ordering is required only one time.

The threshold level determination algorithm in $O(N)$ time

```
i=0,m=s,
while m<N
    i=i+1,m=m+1;
    a=Interleaved(v(\mathbf{ind}(i));
    b=Interleaved ( }v(\mathbf{(ind}(m))
    j= Bit max + 1
    while }a\not=
        j=j-1;
        a=Parent(a);
        b=Parent(b);
        lmax max (l max , j);
        end;
end;

\section*{Binary Search in Sorted List}
- Operation of getting non-empty boxes at any level \(L\) (say neighbors) can be performed with \(\mathrm{O}(\log N)\) complexity for any fixed \(d\).
- It consists of obtaining a small list of all
neighbor boxes with \(\mathrm{O}(1)\) complexity and
- Binary search of each neighbor in the sorted list
at level \(L\) is an \(O(L d)\) operation.
- For small \(L\) and \(d\) this is almost \(O(1)\) procedure.

\title{
The Multilevel Fast Multipole Method
}

\section*{Review}

FMM aims at accelerating
the matrix vector product
Matrix entries determined by a set of source points and evaluation points (possibly the same)
- Function \(\Phi\) has following point-centered representations \(\boldsymbol{\Phi}=\left(\begin{array}{cccc}\Phi\left(\mathbf{y}_{1}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{N}\right) \\ \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{N}\right) \\ \ldots & \ldots & \ldots & \ldots \\ \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{N}\right)\end{array}\right)\). \(\mathrm{X}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\}, \quad \mathbf{x}_{i} \in \mathrm{R}^{d}, \quad i=1, \ldots, N\), about a given point \(\mathrm{X}_{*}\)
\(\square\) Local (valid in a neighborhood of a given point)
Ramani Duraiswami
\(\square\) Far-field or multipole (valid outside a neighborhood of a given point)
\(\square\) In many applications \(\Phi\) is singular
- Representations are usually series

Could be integral transform representations
- Representations are usually approximate
\(\square\) Error bound guarantees the error is below a specified tolerance
CSCAMM FAM 04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

\section*{Review}
\(\Phi\left(y_{j}, x_{i}\right)=\sum_{w=0}^{p-1} A_{m}\left(X_{i}\right) F_{m}\left(y_{j}\right)+E \operatorname{Eror}\left(\left\{_{p}, X_{i} y_{j}\right)_{j}\right)\).
- One representation, valid in a given domain, can be converted to another valid in a subdomain
 contained in the original domain
- Factorization trick is at \(=\sum_{m=0}^{p-1} B_{m} F_{m}\left(\mathrm{y}_{\mathrm{j}}\right)+\operatorname{Error}(p, N, M, j=1, \ldots, M\). core of the FMM speed up
- Representations we use are factored \(\ldots\) separate points \(x_{i}\) and \(y_{j}\)
- Data is partitioned to organize the source points and evaluation
points so that for each point we can separate the points over which we can use the factorization trick, and those we cannot.
- Hierarchical partitioning allows use of different factorizations for different groups of points
Accomplished via MLFMM

\section*{Prepare Data Structures}
- Convert data set into integers given some maximum number of bits allowed/dimensionality of space
- Interleave
- Sort
- Go through the list and check at what bit position two strings differ
\(\square\) For a given \(s\) determine the number of levels of subdivision needed
\(\square s\) is the maximum number of points in a box at the finest level

\(\mathrm{S} \mid \mathrm{S}\)-reexpansion (Far to Far, or Multipole to Multipole, or M2M)

\section*{UPWARD PASS}
- Partition sources into a source hierarchy.
- Stop hierarchy so that boxes at the finest level contain at most s sources
- Let the number of levels be \(L\)
- Consider the finest level
- For non-empty boxes we create \(S\) expansion about center of the box \(\Phi\left(x_{i}, y\right)=\sum^{P} u_{i} B\left(x_{*}, x_{i}\right) S\left(x_{*}, y\right) \quad \Phi_{1}^{(n, L)}(\mathbf{y})=\mathbf{C}^{(n, L)} 。 \mathbf{S}\left(\mathbf{y}-\mathbf{x}_{c}^{(n, L)}\right)\),
\[
\mathrm{C}^{(n, L)}=\sum_{\mathbf{x}_{i} \in E_{1}(n, L)} u_{i} \mathbf{B}\left(\mathbf{x}_{i}, \mathbf{x}_{c}^{(n, L)}\right) .
\]
- We need to keep these coefficients. \(\boldsymbol{C}^{(n, l)}\) for each level as we will need it in the downward pass
- Then use S/S translations to go up level by level up to level 2.
- Cannot go to level 1 (Why?)
- S expansion is valid in the domain E_3 outside domain E_1 (provided \(d<9\) )
\(E_{3}\)



Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

\section*{UPWARD PASS}
- At the end of the upward pass we have a set of \(S\) expansions (i.e. we have coefficients for them)
- we have a set of coefficients \(\boldsymbol{C}^{(n, l)}\) for \(n=1, \ldots, 2^{l d} \quad l=L, \ldots, 2\)
- Each of these expansions is about a center, and is valid in some domain
- We would like to use the coarsest expansions in the downward pass (have to deal with fewest numbers of coefficients)
- But may not be able to --- because of domain of validity
- Upward pass works on source points and builds representations to be used in the downward pass, where the actual product will be evaluated

\section*{DOWNWARD PASS}
- Starting from level 2, build an \(R\) expansion in boxes where \(R\) expansion is valid
- Must to do \(S \mid R\) translation
- The \(S\) expansion is not valid in boxes immediately surrounding the current box
- So we must exclude boxes in the \(\mathrm{E}_{4}\) neighborhood



\section*{Downward Pass. Step 1.}

Level 2:


Level 3:


Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.


Downward Pass. Step 1.
\(P_{4}=\) PowerOfE \(E_{4}\) Neighborhood \(=3^{d} 2^{d}-3^{d}=3^{d}\left(2^{d}-1\right)\)

\(\begin{array}{ll}d=1: & P_{4}=3, \\ d=2: & P_{4}=27,\end{array} \quad\) Exponential
\(d=3: \quad P_{4}=189, \quad\) Growth
\(d=4: \quad P_{4}=1215\),

Total number of S|R-translations per 1 box in \(d\)-dimensional space
(far from the domain boundaries)
\(\mathrm{R} \mid \mathrm{R}\)-reexpansion (Local to Local, or L2L)


CSCAMM EAM04:04/19/2004

\section*{Downward Pass Step 2}
- Now consider we already have done the \(\mathrm{S} \mid \mathrm{R}\) translation at some level at the center of a box.
- So we have a R expansion that includes contribution of most of the points, but not of points in the \(E_{4}\) neighborhood
- We can go to a finer level to include these missed points
- But we will now have to translate the already built R expansion to a box center of a child
\(\square\) (Makes no sense to do \(S \mid R\) again, since many \(S \mid R\) are consolidated in this R expansion)
- Add to this translated one, the \(\mathrm{S} \mid \mathrm{R}\) of the \(\mathrm{E}_{4}\) of the finer level
- Formally

Step 2. At \(l=2\) we have
\[
\Phi_{3}^{(n, 2)}(\mathbf{y})=\Phi_{4}^{(n, 2)}(\mathbf{y}), \quad \mathbf{D}^{(n, 2)}=\widetilde{\mathbf{D}}^{(n, 2)},
\]

Form \(\Phi_{3}^{\left(n_{3}\right)}(\mathbf{y})\) (or expansion coefficients of this function) by adding \(\Phi_{4}^{(\text {Praren( } n \text { ) })-1)}(\mathbf{y})\) to \((\mathbf{R} \mid \mathbf{R})\) - translated coefficients of the parent box to the child center:
\[
\begin{aligned}
& \Phi_{3}^{(n, t)}(\mathbf{y})=\mathrm{D}^{(n, D)} \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{c}^{(n, t)}\right), \\
& \mathrm{D}^{(x, t)}=\widetilde{\mathrm{D}}^{(n, t)}+(\mathbf{R} \mid \mathbf{R})\left(\mathbf{x}_{c}^{(n, t)}-\mathbf{x}_{c}^{(m, l-1)}\right) \mathrm{D}^{(m, l-1)}, \quad m=\operatorname{Parent}(n) . \\
& \Phi_{4}^{(n, l)}(\mathbf{y})=\widetilde{\mathbf{D}}^{(n, t)} \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{c}^{(n, t)}\right), \\
& \widehat{\mathbf{D}}^{(n, l)}=\sum_{m \in I_{4}(n, l)}(\mathbf{S} \mid \mathbf{R})\left(\mathbf{x}_{c}^{(n, l)}-\mathbf{x}_{c}^{(m, l)}\right) \mathbf{C}^{(m, l)} .
\end{aligned}
\]

Figure shows that local-to-local translation is applicable in this case (smaller sphere is located completely inside the larger sphere), and junction of structures \(E_{3}(n, l)\) and \(E_{4}(n, l+1)\) produces \(E_{3}(n, l+1)\)
\[
E_{3}(n, l+1)=E_{3}(n, l) \cup E_{4}(n, l+1) \text {. }
\]

Domains of Expansion Validity (5). \(\mathrm{R} \mid \mathrm{R}\) and \(\mathrm{S} \mid \mathrm{S}\)-translations.

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

\section*{Final Summation}
- At this point we are at the finest level.
- We cannot do any \(\mathrm{S} \mid \mathrm{R}\) translation for \(\mathrm{x}_{\mathrm{i}}\) 's that are in the E_3 neighborhood of our \(y_{j}\) 's
- Must evaluate these directly

\section*{Final Summation}

As soon as coefficients \(\mathbf{D}^{(n, L)}\) are determined total potential can be computed for any point \(\mathbf{y}_{j} \in E_{1}(0,0)\), where \(\Phi_{2}^{(n, l)}(\mathbf{y})\) can be computed straightforward. So:


\section*{Cost of FMM --- Upward Pass}
- Upward Step1. Cost of creating an S expansion for each source point. O(NP)
- Upward Step2. Cost of performing an \(\mathrm{S} \mid \mathrm{S}\) translation
\(\square\) If we use expensive (matrix vector) method cost is \(O\left(P^{2}\right)\) for one translation.
- Step 2 is repeated from level \(L-1\) to level 2
\[
\begin{aligned}
\operatorname{CosttJpward~}_{2} & =2^{d}\left(2^{(L-1) d}+2^{(L-2) d}+\ldots+2^{2 d}\right) \operatorname{CostSS}(P) \\
& <\frac{2^{d}}{2^{d}-1}\left(2^{L d}-1\right) \operatorname{CostSS}(P) \sim \frac{N}{s} \operatorname{CostSS}(P)
\end{aligned}
\]

\section*{COST of MLFMM}
- Cost of downward pass, step 1 is the cost of performing \(\mathrm{S} \mid \mathrm{R}\) translations at each level \(\operatorname{CostDownward} d_{1} \lesssim P_{4}(d)\left(2^{2 d}+\ldots+2^{L d}\right) \operatorname{CostSR}(P) \sim P_{4}(d) \frac{N}{s} \operatorname{CostSR}(P)\),
- At the downward pass, \(2^{\text {nd }}\) step we have the cost of the \(R \mid R\) translation, and \(S \mid R\) translation from the \(E_{4}\) neighbourhood (already accounted for above)
\(\operatorname{CostDownward} d_{2}=2^{d}\left(2^{2 d}+\ldots+2^{(L-1) d}\right) \operatorname{CostRR}(P) \sim \frac{N}{s} \operatorname{CostRR}(P)\),
- Final summation cost is CostEvaluation \(=M\left(P_{2}(d) s \operatorname{CostFunc}+P\right)\).
- Total Cost of Upward Pass \(\sim N P+(N / s)\left(P^{2}\right)\)

CSCAMM FAM04:04/19/2004
© Duraiswami \& Gumerov, 2003-2004
- Total

CSCAMM \(^{\text {CostMLFMM }}=(M+N) P+\left(P_{4}(d)+2\right) \frac{N}{s} \operatorname{CositTranslation~}(P)+P_{2}(d)\) sMCostFunc
```

 Itemized Cost of MLFMM
 Regular mesh:
N=2 2,d,}s=\mp@subsup{2}{}{\mp@subsup{L}{s}{}d},\quadL=\mp@subsup{L}{max}{*}=\mp@subsup{L}{*}{*}-\mp@subsup{L}{s}{
Assume that all
translation costs are
CostUpward}1=NCostExpansion (P)=O(NP). the same
CostTranslation(P)
CostUpward}\mp@subsup{2}{2}{=}\mp@subsup{2}{}{d}(\mp@subsup{2}{}{(L-1)d}+\mp@subsup{2}{}{(L-2)d}+···+\mp@subsup{2}{}{2d})\operatorname{CostSS}(P
< 2}\mp@subsup{2}{}{d}-1\mp@code{(2
CostDowmward
CostDownward}\mp@subsup{2}{2}{}=\mp@subsup{2}{}{d}(\mp@subsup{2}{}{2d}+···+\mp@subsup{2}{}{(L-1)d})\operatorname{CostRR(P)~}~N=\operatorname{CostRR(P),
CostEvaluation = M(P)
and }\mp@subsup{E}{2}{}\mathrm{ neighborhoods
CostMLFMM}=(M+N)P+(\mp@subsup{P}{4}{}(d)+2)\frac{N}{S}\mathrm{ CostTranslation (P) + P (d)sMCostFunc
CSCAMM FAM04: 04/19/2004
@ Duraiswami \& Gumerov, 2003-2004
CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

```

Optimization of the Grouping Parameter

CostMLFMM


CostMLFMM \(=(M+N) P+\left(P_{4}(d)+2\right) \frac{N}{s}\) CostTranslation \((P)+P_{2}(d)\) sMCostFunc
\[
\frac{\partial \operatorname{CostMLFMM}}{\partial s}=-\left(P_{4}(d)+2\right) \frac{N}{s^{2}} \operatorname{CostTranslation}(P)+P_{2}(d) M \operatorname{CostFunc}=0
\]
\[
s_{a p t}=\left[\frac{N\left(P_{4}(d)+2\right) \text { CostTranslation }(P)}{M P_{2}(d) \text { CostFunc }}\right]^{1 / 2} .
\]

CostMLFMM \(_{\text {opt }}=(M+N) P+2\left[M N\left(P_{4}(d)+2\right) P_{2}(d) \text { CostTranslation }(P) \text { CostFunc }\right]^{1 / 2}\).
CSCAMM FAM04: 04/19/2004 © Uuralswamı \& Gumerov, LUUS-LUU4

Optimization of the Grouping Parameter (Example)
\[
s_{o p t}=\left[\frac{N\left(P_{4}(d)+2\right) \text { CostTranslation }(P)}{M P_{2}(d) \text { CostFunc }}\right]^{1 / 2} .
\]

CostMLFMM \(M_{\text {opt }}=(M+N) P+2\left[M N\left(P_{4}(d)+2\right) P_{2}(d) \text { CostTranslation }(P) \text { CostFunc }\right]^{1 / 2}\).
Example:
\[
N=M, \quad P_{4}(d)=3^{d}\left(2^{d}-1\right), \quad P_{2}(d)=3^{d}
\]

CostTranslation \((P)=P^{2}, \quad\) CostFunc \(=1\)
\[
s_{o p t} \sim 2^{d / 2} P ; \quad \text { CostMLFMM } M_{o p t} \sim 2 N P\left(1+3^{d} 2^{d / 2}\right)
\]
\[
\text { For } d=2, \quad P=10, \quad s_{o p t} \sim 38, \quad \text { CostMLFMM } M_{o p t} \sim 38 N P=380 N
\]

If non-optimized,
\[
s=1 ; \quad \text { CostMLFMM } M_{o p t} \sim N P\left(2+3^{d} 2^{d} P\right)
\]
\[
\text { For } d=2, \quad P=10, \quad s=1, \quad \text { CostMLFMM } M_{o p t} \sim 360 \mathrm{NP}=3600 \mathrm{~N}
\]

In this example optimization results in about 10 times savings!
CSCAMM EAM04: 04191/2004 © Duraiswami \& Gumerov, 2003-2004

\section*{DEMO}
- Yang Wang (wpwy@umiacs.umd.edu),
"Java Implementation and Simulation of the Fast Multipole Method for 2-D Coulombic Potential Problems," AMSC 698R course project report, 2003.
- http://brigade.umiacs.umd.edu/~wpwy/applet/FmmApplet.html
- Seems to work with Mozilla and Netscape ...IE has problems

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

\section*{Some Numerical Experiments with MLFMM}

Error Test. FMM vs Middleman.
Regular Mesh, \(N=M\).

, Of Che Complexity Results for Generalized Multilevel Fast Multipole Methods in \(d\) Dimensions.

UMIACS TR 2003-28,
Also issued as Computer Science Technical Report CS-TR-\# 4458
University of Maryland, College Park, 2003.
Available online via
http://www.umiacs.umd.edu/~ramani/pubs/umiacs-tr-2003-28.pdf

SCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Test with Varying Grouping Parameter.


CSCAMMEAM04:04/19/2ymber of Points in thesmaflest Boxni \& Gumerov, 2003-2004


Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.


\section*{Random Distributions}

Dependence of CPU Time on the Grouping
Dependence of CPU Time on the Maximum
Space Subdivision Level
Parameter, s

\(\begin{array}{ll}\text { Number of Points in the Smallest Box } \\ \text { CSCAMMEAM04: 04/19/2004 } & \text { © Duraiswami \& Gumerov, 2003-2004 }\end{array}\)
CSCAMMEAM04: 04/19/2004 © © Duraiswami \& Gumerov, 2003-2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

\section*{Adaptive FMM}
- H. Cheng, L. Greengard, and V. Rokhlin, "A Fast Adaptive Multipole Algorithms in Three Dimensions," Journal of Computational Physics, 155:468-498, 1999.
- N.A. Gumerov, R. Duraiswami, and Y.A. Borovikov, "Data structures and algorithms for adaptive multilevel fast multipole methods," in preparation.
\(\square\)

\section*{Outline}
- 3D Laplace equation and Coulomb potentials
- Multipole and local expansions
- Special functions \(\square\) Legendre polynomials
Associated Legendre functions
\(\square\) Spherical harmonics
- Translations of elementary solutions
- Complexity of FMM
- Reducing complexity
- Rotations of elementary solutions
- Coaxial Translation-Rotation decomposition
- Faster Translation techniques

Review
- FMM aims at accelerating
the matrix vector product
the matrix vector product
Matrix entries determined by a set of source points and evaluation points (possibly the same)
- Function \(\Phi\) has following
\[
\mathrm{X}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{N}}\right\}, \quad \mathbf{x}_{i} \in \mathrm{R}^{d}, \quad i=1, \ldots, N,
\] point-centered representations
\[
\Phi=\left(\begin{array}{cccc}
\Phi\left(\mathbf{y}_{1}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{N}\right) \\
\Phi\left(\mathbf{y}_{2}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{N}\right) \\
\ldots & \ldots & \ldots & \ldots \\
\Phi\left(\mathbf{y}_{M}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{M_{M}}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{M_{3}}, \mathbf{x}_{N}\right)
\end{array}\right) .
\]
\[
\mathrm{Y}=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{M d}\right\}, \quad \mathbf{y}_{j} \in \mathrm{R}^{d}, \quad j=1, \ldots, M
\]
about a given point \(\mathrm{X}_{*}\)
\(\square\) Local (valid in a neighborhood of a \(v_{j}=\sum_{i=1}^{M J} u_{i} \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right), j=1, \ldots, M\).
I Far-field or multipole (valid outside a neighborhood of a given point)
In many applications \(\Phi\) is singular
- Representations are usually series
\(\square\) Could be integral transform representations
- Representations are usually approximate
- Error bound guarantees the error is below a specified tolerance

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

\section*{Review}

One representation, valid in a given domain, can be converted to another valid in a subdomain contained in the original domain
- Factorization trick is at core of the FMM speed up
- Representations we use are factored \(\ldots\) separate points \(x_{i}\) and \(y_{j}\)
- Data is partitioned to organize the source points and evaluation points so that for each point we can separate the points over which we can use the factorization trick, and those we cannot.
- Hierarchical partitioning allows use of different factorizations for different groups of points
- Accomplished via MLFMM discussed yesterday
- Today concrete example for Laplace equation/Coulomb potentials

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

\section*{Solution of Laplace's equation}
- Green's function for Laplace's equation
\[
\nabla^{2} G(\mathrm{x}, \mathrm{y})=\delta(\mathrm{x}-\mathrm{y}) \quad G(\mathrm{x}, \mathrm{y})=-\frac{1}{4 \pi \mathrm{x}-\mathrm{y}}
\]

\section*{Molecular and stellar dynamics}
- Many particles distributed in space
- Particles are moving and exert a force on each other
- Green's formula
\(\phi(\mathbf{y})=\int_{\Omega} \phi(\mathbf{x}) \delta(\mathbf{x}-\mathbf{y}) d^{3} x=\int_{\Omega} \phi(\mathbf{x}) \nabla^{2} G(\mathbf{x}, \mathbf{y}) d^{3} x\)
\(=-\int_{\Omega} \nabla \phi(\mathrm{x}) \cdot \nabla G(\mathrm{x}, \mathrm{y}) d^{3} x+\int_{\partial \Omega} \phi(\mathrm{x}) \mathbf{n} \cdot \nabla G(\mathrm{x}, \mathrm{y}) d S_{x}\)
\(=\int_{\Omega} \nabla^{2} \phi(\mathrm{x}) \nabla G(\mathrm{x}, \mathrm{y}) d^{3} x+\int_{\partial \Omega}[\phi(\mathrm{x}) \mathbf{n} \cdot \nabla G(\mathrm{x}, \mathrm{y})-\mathbf{n} \cdot \nabla \phi(\mathrm{x}) G(\mathrm{x}, \mathrm{y})] d S_{x}\)
- Goal solve Laplace's equation with given boundary conditions
- E.g. \(\nabla^{2} \phi=0\) in \(\Omega \quad \partial \phi / \partial \mathrm{n}=\mathrm{f}\) on \(\partial \Omega\)
\[
\phi(\mathrm{y})-\int_{\partial \Omega} \phi(\mathrm{x}) \frac{\partial G}{\partial n}(\mathrm{x}, \mathrm{y})=-\int_{\partial \Omega} f(\mathrm{x}) G(\mathrm{x}, \mathrm{y}) d S_{x}
\]
- Upon discretization yields system of type that can be solved iteratively, with matrix vector products accelerated by FMM

Simplest case this force obeys an inverse-square law (gravity, coulombic interaction)
- Goal of computations compute the dynamics \(\quad \frac{d \mathbf{x}_{i}}{d t^{2}}=F_{i}\),
- Force is

- Recompute force and iterate


\section*{What is needed for the FMM}
- Local expansion
- Far-field or multipole expansion
- Translations
-Multipole-to-multipole (S|S)
-Local-to-local (R|R)
-Multipole-to-local (S|R)
- Error bounds

\section*{Translation and Differentiation Properties} for Laplace Equation

If
\[
\nabla^{2} \Phi(\mathbf{r})=0, \quad \mathbf{r} \in \Omega
\]
then shifted function \(\Phi\left(\mathbf{r}-\mathbf{r}_{0}\right)\) also satisfies the Laplace equation
\[
\nabla^{2} \Phi\left(\mathbf{r}-\mathbf{r}_{0}\right)=0, \quad \mathbf{r}-\mathbf{r}_{0} \in \boldsymbol{\Omega}
\]

Also the Laplace operator is commutative with differential operators
\[
D_{x}=\frac{\partial}{\partial x}, \quad D_{y}=\frac{\partial}{\partial y}, \quad D_{z}=\frac{\partial}{\partial z}, \quad \text { or } \quad D_{\mathrm{t}}=t \cdot \nabla,
\]

So
\[
D_{\mathrm{t}} \nabla^{2} \Phi(\mathbf{r})=\nabla^{2} D_{\mathrm{t}} \Phi(\mathbf{r}) .
\]

CSCAMM FAM04: 04/19/2004

\section*{Introduction of Multipoles for}

Laplace Equation
\(\Phi_{n}(\mathbf{r})=(-1)^{n} D_{\mathbf{t}_{1}} D_{\mathrm{t}_{2}} \ldots D_{\mathrm{t}_{n}} \Phi(\mathbf{r})\)
also satisfy the Laplace equation. In case when \(\Phi(\mathbf{r})=G(\mathbf{r})=|\mathbf{r}|^{-1}\) functions
\[
G_{n}(\mathbf{r})=(-1)^{n} D_{\mathbf{t}_{1}} D_{\mathbf{t}_{2}} \ldots D_{\mathbf{t}_{n}} \frac{1}{|\mathbf{r}|}, \quad|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \neq 0
\]
are called MULTIPOLES OF DEGREE \(n\) centered at \(\mathbf{r}=0\). Vectors \(\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{n}\) are called multole generating vectors. Also \(G_{n}(\mathbf{r})\) can be represented as
\[
G_{n}(\mathbf{r})=\sum_{i+j+k=n} Q_{i j k}^{(n)} \frac{\partial^{n}}{\partial x^{i} \partial y^{i} \partial z^{k}} \frac{1}{|\mathbf{r}|^{\prime}}
\]
where \(Q_{i j k}^{(n)}\) are called 'components of the multipole momentum'.
\[
\begin{array}{ll}
n=0: & \text { 'monopole' } \\
n=1: & \text { 'dipole' } \\
n=2: & \text { 'quadrupole' } \\
n=3: & \text { 'octupole'. }
\end{array}
\]

\section*{Multipole Expansion of Laplace} Equation Solutions
\[
\begin{gathered}
\Phi(\mathbf{r})=\sum_{n=0}^{\infty} b_{n} G_{n}(\mathbf{r}), \\
G_{n}(\mathbf{r})=\sum_{i+j+k=n} Q_{i, k}^{(n)} \frac{\partial^{n}}{\partial x^{i} \partial y} \partial z^{k}
\end{gathered} \frac{1}{|\mathbf{r}|} .
\]

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.


Legendre polynomials \(P_{n}(\mu)\) can be introduced via generating function
\[
\frac{1}{\sqrt{1-2 \mu x+x^{2}}}=\left\{\begin{array}{cl}
\sum_{n=0}^{\infty} P_{n}(\mu) x^{n}, & |x|<1 \\
\sum_{n=0}^{\infty} P_{n}(\mu) x^{-n-1}, & |x|>1
\end{array}\right.
\]

First few polynomials
\[
\begin{aligned}
& P_{0}(\mu)=1 \\
& P_{1}(\mu)=\mu=\cos \theta \\
& P_{2}(\mu)=\frac{1}{2}\left(3 \mu^{2}-1\right)=\frac{1}{4}(3 \cos 2 \theta+1)
\end{aligned}
\]


\section*{Legendre Polynomials (2)}

First six polynomials ( \(n=0, \ldots, 5\) ):


CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

\section*{Legendre Polynomials (3)}

\section*{Some Properties:}

QThe Rodrigues' formula
\[
P_{n}(\mu)=\frac{1}{2^{n} n!} \frac{d^{n}}{d \mu^{2}}\left(\mu^{2}-1\right)^{n}
\]

Q Form orthogonal complete basis in \(L_{2}[-1,1]\) :
\[
\int_{-1}^{1} P_{n}(\mu) P_{m}(\mu) d \mu=\left\{\begin{array}{cc}
\frac{2}{2 n+1}, & m=n \\
0, & m \neq n
\end{array}\right.
\]

A lot of other nice properties!
\[
\text { At } r=r_{0} \text { the series also converges, if } \cos \theta \neq 1\left(\mathbf{r} \neq \mathbf{r}_{0}\right) \text {. }
\]
    order
    \(Y_{n}^{m}(\theta, \varphi)=(-1)^{m} \sqrt{\frac{2 n+1}{4 \pi} \frac{(n-|m|)!}{(n+|m|)!}} P_{n}^{|m|}(\mu) e^{i m \varphi}, \quad \mu=\cos \theta\).
where \(\theta\) is the angle between two points on a sphere with spherical angles \(\left(\theta^{\prime}, \varphi^{\prime}\right)\) and \((\hat{\theta}, \hat{\varphi})\).


\section*{Associated Legendre Functions}
```

Pm}(\mu)=\frac{(-1\mp@subsup{)}{}{m}\mp@subsup{)}{}{m}}{\mp@subsup{2}{}{m}}\frac{(n+m)!}{(n-m)!m!}(1-\mp@subsup{\mu}{}{2}\mp@subsup{)}{}{m/2}F(m-n,m+n+1;m+1;\frac{1-\mu}{2}
= (-1\mp@subsup{)}{}{m}

```
where \((n)_{I}\) is the Pochhammer's symbol:
\[
(n)_{0}=1, \quad(n)_{l}=\frac{(n+l-1)!}{(n-1)!} .
\]

This formula yields the following partieular functions:
\(P_{1}^{1}(\mu)=-\left(1-\mu^{2}\right)^{1 / 2}, \quad P_{2}^{1}(\mu)=-3 \mu\left(1-\mu^{2}\right)^{1 / 2}, \quad P_{2}^{2}(\mu)=3\left(1-\mu^{2}\right)\). \(\left(P_{n}^{m}, P_{i}^{m}\right)=\int_{-1}^{1} P_{n}^{m}(\mu) P_{l}^{m}(\mu) \mathrm{d} \mu=\frac{2}{2 n+1} \frac{(n+m)!}{(n-m)!} \delta_{n]}\)

Orthogonal!


\section*{Orthonormality of Spherical Harmonics}

The scalar product of two spherical harmonics in \(L_{2}\left(S_{u}\right)\) is
\[
\left(Y_{n}^{m}, Y_{n^{\prime \prime}}^{m^{\prime}}\right)=\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} Y_{n}^{m}(\theta, \varphi) \bar{Y}_{n}^{m^{\prime}}(\theta, \varphi) \mathrm{d} \varphi=\delta_{m n^{\prime}} \delta_{n n^{\prime}} .
\]

Expansion of an arbitrary surface function over the basis of spherical harmonics:
\[
\begin{gathered}
F(\theta, \varphi)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} F_{n}^{m} Y_{n}^{m}(\theta, \varphi) \\
\left(F, Y_{n^{\prime}}^{m^{\prime}}\right)=\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} F(\theta, \varphi) Y_{n^{\prime}}^{m^{\prime}}(\theta, \varphi) d \varphi . \\
\left(F, Y_{n^{\prime}}^{m^{\prime}}\right)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} F_{n}^{m}\left(Y_{n}^{m}, Y_{n^{\prime}}^{m^{\prime}}\right)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} F_{n}^{m} \delta_{m m^{\prime}} \delta_{m n^{\prime}}=F_{n^{\prime}}^{m^{\prime}} . \\
F_{n}^{m \prime}=\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} F(\theta, \varphi) Y_{n^{\prime}}^{m^{\prime}}(\theta, \varphi) \mathrm{d} \varphi .
\end{gathered}
\]

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.


\section*{Error bound}
- Series converge rapidly
-E.g. For multipole expansion we have
\[
\Phi(P)=\sum_{i=1}^{k} \frac{q_{i}}{\left\|P_{i}-P\right\|}
\]
potential due to a set of \(k\) sources of strengths \(\left\{q_{i}, i=1, \ldots, k\right\}\) at \(\left\{P_{i}=\right.\) \(\left.\left(r_{i}, \theta_{i}, \phi_{i}\right), i=1, \ldots, k\right\}\), with \(\left|r_{i}\right|<a\). Then for \(P=(r, \theta, \phi) \in R^{3}\) with \(|r|>a\),
\[
\begin{gathered}
\Phi(P)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{M_{n}^{m}}{r^{n+1}} Y_{n}^{m}(\theta, \phi), \\
M_{n}^{m}=\sum_{i=1}^{k}(-1)^{m} q_{i} * r_{i}^{n} * Y_{n}^{-m}\left(\theta_{i}, \phi_{i}\right) . \\
\left|\Phi(P)-\sum_{n=0}^{p} \sum_{m=-n}^{n} \frac{M_{n}^{m}}{r^{n+1}} Y_{n}^{m}(\theta, \phi)\right| \leq \frac{A}{r-a}\left(\frac{a}{r}\right)^{p+1},
\end{gathered}
\]

CSCAMM FAM04: 04/19/2004 \(\quad \sum_{i=1}\) © Duraiswami \& Gumerov, 2003-2004
CSCAMM FAM04: 04/19/2004
\[
A=\sum_{i=1}^{k}\left|q_{i}\right| .
\]


Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Translations of elementary solutions of the 3D

Laplace equation
\[
\begin{array}{cl}
S_{n}^{m}\left(\mathbf{r}_{p}\right)=\sum_{l=0}^{\infty} \sum_{\varepsilon=-l}^{l}(S \mid R)_{l n}^{s m}\left(\mathbf{r}_{p q}^{\prime}\right) R_{l}^{s}\left(\mathbf{r}_{q}\right), & \left|\mathbf{r}_{q}\right|<\left|\mathbf{r}_{p q}^{\prime}\right|, \quad p \neq q . \\
S_{n}^{m}\left(\mathbf{r}_{p}\right)=\sum_{l=0}^{\infty} \sum_{s=-b}^{l}(S \mid S)_{l s}^{s m}\left(\mathbf{r}_{p q}^{l}\right) S_{l}^{s}\left(\mathbf{r}_{q}\right), & \left|\mathbf{r}_{q}\right|>\left|\mathbf{r}_{p q}^{\prime}\right|,
\end{array}
\]
\[
R_{n}^{m}\left(\mathbf{r}_{p}\right)=\sum_{l=0}^{\infty} \sum_{s=-l}^{l}(R \mid R)_{l n}^{s m}\left(\mathbf{r}_{p q}^{l}\right) R_{l}^{s}\left(\mathbf{r}_{q}\right)
\]

For a p-truncated expansion \((E \mid F)\) is a \(p^{2} \times p^{2}\) matrix

See Tang 03 or Greengard 89 for explicit expressions
© Duraiswami \& Gumerov, 2003-2004

\section*{Translation of a Multipole \\ Expansion}

Let
\[
\Phi(P)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{O_{n}^{m}}{r^{\prime n+1}} Y_{n}^{m}\left(\theta^{\prime}, \phi^{\prime}\right)
\]

Where \(P-Q=\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)\). Then the potential \(\phi\) can be expressed as,
\[
\begin{gathered}
\Phi(P)=\sum_{j=0}^{\infty} \sum_{k=-j}^{j} \frac{M_{j}^{k}}{r_{j}^{j+1}} Y_{j}^{k}(\theta, \phi), \\
M_{j}^{k}=\sum_{n=0}^{j} \min (k+j-n, n)_{\sum_{m=\max (k+n-j,-n)} \frac{O_{j-n}^{k-m} ;|k|-|m|-|k-m|}{} A_{n}^{m} A_{j-n}^{k-m} \rho^{n} Y_{n}^{-m}(\alpha, \beta)}^{A_{j}^{k}} ; \\
A_{n}^{m}=\frac{(-1)^{n}}{\sqrt{(n-m)!(n+m)!}} \cdot M=S S(\rho, \alpha, \beta) * O \\
\text { CSCAMM FAM04:04/19/2004} \quad \\
\text { © Duraiswami \& Gumerov, 2003-2004 }
\end{gathered}
\]

\section*{Translation of a Local Expansion}

Suppose that
\[
\Phi(P)=\sum_{n=0}^{p} \sum_{m=-n}^{n} O_{n}^{m} r^{\prime n} Y_{n}^{m}\left(\theta^{\prime}, \phi^{\prime}\right)
\]
is a local expansion centered at \(Q=(\rho, \alpha, \beta)\),
Where \(P=(r, \theta, \phi)\), and \(P-Q=\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)\).
Then the local expansion centered at origin is
\[
\Phi(P)=\sum_{j=0}^{p} \sum_{k=-j}^{j} L_{j}^{k} r^{j} Y_{j}^{k}(\theta, \phi)
\]
where
\[
\begin{array}{r}
L_{j}^{k}=\sum_{n=j}^{p} \sum_{m=k-n+j}^{k-j+n} \frac{O_{n}^{m} i|m|-|m-k|-|k|}{} A_{j}^{k} A_{n-j}^{m-k} \rho^{n-j} Y_{n-j}^{m-k}(\alpha, \beta) \\
(-1)^{n+j} A_{n}^{m}
\end{array},
\]

\section*{Complexity Analysis}

Step 1,Forming Expansions \(O\left(N p^{2}\right)\).
Step 2, Upward pass with Matrix based \(\mathrm{S} \mid \mathrm{S}\) translations
\[
\sum_{l=2}^{n-1} 8 * 8^{l} * p^{4}=\frac{8^{3}-8^{n+1}}{1-8} p^{4} \approx \frac{8}{7} 8^{n} p^{4}=\frac{8}{7} \frac{N}{s} p^{4}
\]

Step 3, Downward pass with matrix based \(\mathrm{S} \mid \mathrm{R}\) and \(\mathrm{R} \mid \mathrm{R}\) translations
\[
\sum_{l=2}^{n} 8^{l} * p^{4}+\sum_{l=2}^{n} 8^{l} * p^{4} * 189 \approx \frac{8}{7} * 8^{n} * 190 p^{4}=\frac{1520}{7} \frac{N}{s} p^{4}
\]

Step 4, Evaluate \(R\) expansions at points \(O\left(N p^{2}\right)\)
Step 5, Sum missed neighbor points \(O(27 N s)\)
The total cost for all five steps is approximately
\[
2 N p^{2}+\frac{1528}{7} \frac{N}{s} p^{4}+27 N s
\]

With \(s \approx \sqrt{\frac{1528}{189}} p^{2}\), the total number of operations is approximately \(156 N p^{2}\).
CSCAMM FAM04:04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.
\[
\text { Euler Angles } \quad Q=\left[\begin{array}{ccc}
\mathbf{i}_{\hat{x}} \cdot \mathbf{i}_{x} & \mathbf{i}_{\hat{x}} \cdot \mathbf{i}_{y} & \mathbf{i}_{x} \cdot \mathbf{i}_{z} \\
\mathbf{i}_{\hat{y}} \cdot \mathbf{i}_{x} & \mathbf{i}_{\hat{y}} \cdot \mathbf{i}_{y} & \mathbf{i}_{\hat{y}} \cdot \mathbf{i}_{z} \\
\mathbf{i}_{\bar{z}} \cdot \mathbf{i}_{x} & \mathbf{i}_{\bar{z}} \cdot \mathbf{i}_{y} & \mathbf{i}_{\bar{z}} \cdot \mathbf{i}_{z}
\end{array}\right]
\]
\[
\alpha_{E}=\pi-\alpha_{2}, \beta_{E}=\beta, \quad \gamma_{E}=\gamma .
\]
Spherical Polar Angles


Rotations of elementary solutions of the 3D
Laplace equation

Rotations
\[
\begin{gathered}
P_{n}^{m}(\theta, \varphi)=\sum_{v=-n}^{n} T_{n}^{m}(Q) Y_{n}^{v}(\hat{\theta}, \hat{\varphi}), \\
S_{n}^{m}\left(\mathbf{r}_{p}\right)=\sum_{v=-n}^{n} T_{n}^{m m}(Q) S_{n}^{v}\left(\hat{\mathbf{r}}_{p}\right), \quad\left|\hat{\mathbf{r}}_{p}\right|=\left|\mathbf{r}_{p}\right|, \\
R_{n}^{m}\left(\mathbf{r}_{p}\right)=\sum_{v=-n}^{n} T_{n}^{m m}(Q) R_{n}^{v}\left(\hat{\mathbf{r}}_{p}\right), \quad\left|\hat{\mathbf{r}}_{p}\right|=\left|\mathbf{r}_{p}\right|,
\end{gathered}
\]
\[
(E \mid F)_{m}^{m}(d)=\left.!(E \mid F)_{m}^{n m}(\mathbf{d})\right|_{\theta_{m}-0}, \quad E, F=S, R
\]
(C) Duraiswami \& Gumerov, 2003-2004

Coaxial translation operator has invariant subspaces at fixed order, \(m\), while the rotation operator has invariant subspaces at fixed degree, \(n\).

Coaxial Translation:
\[
(\mathbf{S} \mid \mathbf{R})=(\mathbf{S} \mid \mathbf{R})^{0} \oplus(\mathbf{S} \mid \mathbf{R})^{ \pm 1} \oplus \ldots=\sum_{m=-\infty}^{\infty} \oplus(\mathbf{S} \mid \mathbf{R})^{m}
\]

Rotation
\[
(\mathbf{S} \mid \mathbf{R})=(\mathbf{S} \mid \mathbf{R})_{0} \oplus(\mathbf{S} \mid \mathbf{R})_{1} \oplus \ldots=\sum_{n=0}^{\infty} \oplus(\mathbf{S} \mid \mathbf{R})_{n}
\]

Each can be done in \(p\) operations which cost \(O\left(p^{2}\right)\) resulting in \(O\left(p^{3}\right)\) complexity

CSCAMM FAM04: 04/19/2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

Comparison of Direct Matrix Translation and Coaxial Translation-Rotation Decomposition

© Duraiswami \& Gumerov, 2003-2004

Other Fast translation schemes: Elliot and Board (1996)

Renormalized S- and R-functions

Definition:
\[
\begin{gathered}
\widetilde{S}_{n}^{m}(\mathbf{r})=O_{n}^{m}(\mathbf{r})=\frac{(-1)^{n_{i}|m|}}{\alpha_{n}^{m}} \sqrt{\frac{4 \pi}{2 n+1}} S_{n}^{m}(\mathbf{r})=\frac{(-1)^{n} n^{|m|}}{\alpha_{n}^{m}} \sqrt{\frac{4 \pi}{2 n+1}} \frac{1}{r^{2+1}} P_{n}^{m}(\theta, \varphi) \\
\widetilde{R}_{n}^{m}(\mathbf{r})=I_{n}^{m}(\mathbf{r})=i^{-m \mid} \left\lvert\, \alpha_{n}^{m} \sqrt{\frac{4 \pi}{2 n+1}} R_{n}^{m}(\mathbf{r})=i^{-|m|} \alpha_{n}^{m} \sqrt{\frac{4 \pi}{2 n+1}} r^{n} Y_{n}^{m}(\theta, \varphi)\right. \\
\alpha_{n}^{m}=\alpha_{n}^{-m}=\frac{(-1)^{n}}{\sqrt{(n-m)!(n+m)!}}
\end{gathered}
\]
where

CSCAMM FAM04• 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Other Fast translation schemes: Elliot and Board (1996)

\section*{Structured matrix based translation}

In the renormalized basis translation matrices are simple
\[
\begin{aligned}
& (\widetilde{S} \mid \widetilde{R})_{n^{\prime} n}^{m^{\prime} m}(\mathbf{t})=\left(O \mid I_{n^{\prime} n}^{m^{\prime} m}(\mathbf{t})=O_{n+n^{\prime}}^{m-m^{\prime}}(\mathbf{t})=\widetilde{S}_{n+n^{\prime}}^{m-m^{\prime}}(\mathbf{t}),\right. \\
& \langle\widetilde{S}| \widetilde{S})_{n^{\prime} n}^{m^{\prime} m}(\mathbf{t})=(O \mid O)_{n^{\prime \prime n}}^{m^{\prime} m}(\mathbf{t})=I_{n^{\prime}-n}^{m-m^{\prime}}(\mathbf{t})=\widetilde{R}_{n^{\prime}-n}^{m-m^{\prime}}(\mathbf{t}), \\
& (\widetilde{R} \mid \widetilde{R})_{n^{\prime} n}^{m^{\prime} m}(\mathbf{t})=(I I)_{n^{\prime} n}^{m^{\prime} m}(\mathbf{t})=I_{n-n^{\prime}}^{m^{m-m^{\prime}}}(\mathbf{t})=\widehat{R}_{n-n^{\prime}}^{m-m^{\prime}}(\mathbf{t}) \text {. }
\end{aligned}
\]

Tang 03
- Idea: use the rotation-coaxial translation method, and decompose resulting matrices into structured matrices
- Cost \(O\left(p^{2} \log p\right)\)
- Details in Tang’s thesis.
http://www.umiacs.umd.edu/~ramani/pubs/zhihui_thesis.pdf

These are structured matrices (2D Toeplitz-Hankel type)
Fast translation procedures are possible
(e.g. see \(O\left(p^{2}\right.\) logp) algorithm in W.D. Elliott \& J.A. Board, Jr.:
"Fast Fourier Transform Accelerated Fast Multipole Algorithm"
SIAM J. Sci. Comput. Vol. 17, No. 2, pp. 398-415, 1996).
However, there are some stability issues reported.

\section*{Complexity}

\section*{Cheng et al 1999}
- H. Cheng,, L. Greengard, \(y\) and V. Rokhlin, A Fast Adaptive Multipole Algorithm in Three Dimensions, Journal of Computational Physics 155,
The total cost of the original algorithm is 468-498 (1999)
\[
2 N p^{2}+\frac{1528}{7} \frac{N}{s} p^{4}+27 N s
\]
- Convert to a transform representation ("plane-wave")
\(\square\) at a cost of \(O\left(p^{2} \log p\right)\)
- Expansion formula

With \(s \approx \sqrt{\frac{1528}{189}} p^{2}\), it is \(156 N p^{2}\).
In Tang's algorithm, the total cost is
\[
\frac{1}{r}=\frac{1}{2 \pi} \int_{0}^{\infty} e^{-\lambda\left(=-z_{0}\right)} \int_{0}^{2 \pi} e^{i \lambda\left(\left(x-x_{0}\right) \cos \alpha+\left(y-y_{0}\right) \sin \alpha\right)} d \alpha d \lambda .
\]
\[
2 N p^{2}+\frac{1528}{7} \frac{N}{s} * \frac{85}{4} p^{2} \log (4 p)+9 N s
\]
- Discretize integrals

With \(s \approx \frac{\sqrt{228480 p^{2} \log (4 p)}}{21}\), it is
\[
2 N p^{2}+410 \sqrt{\log (4 p)} N p
\]

According to this result, the break even \(p\) is 5 .

- Convert back

\section*{Reference}
N.A. Gumerov \& R. Duraiswami

Fast Multipole Methods for Solution of the Helmholtz Equation in Three Dimensions

Academic Press, Oxford (2004)
(in process).

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Content } \\
- Helmholtz Equation \\
- Expansions in Spherical Coordinates \\
- Matrix Translations \\
- Complexity and Modifications of the FMM \\
- Fast Translation Methods \\
- Error Bounds \\
- Multiple Scattering Problem \\
\\
\\
CSCAMM FAM04: 04/19/2004 \\
\hline
\end{tabular}

Helmholtz Equation
- Fast Translation Methods
- Error Bounds
- Multiple Scattering Problem

\section*{Helmholtz Equation}
\[
\nabla^{2} \psi+k^{2} \psi=0
\]
- Wave equation in frequency domain I Acoustics
Electromagneics (Maxwell equations)
D Diffusion/heat transfer/boundary layers
Telegraph, and related equations
- \(k\) can be complex
- Quantum mechanics

K Klein-Gordan equation
- Shroedinger equation
- Relativistic gravity (Yukawa potentials, \(k\) is purely imaginary)
- Molecular dynamics (Yukawa)
- Appears in many other models

\section*{Boundary Value Problems}

Dirichlet:
D Neumann:
( Robin:
\[
\begin{gathered}
\left.\psi\right|_{s}=0, \\
\left.\frac{\partial \psi}{\partial n}\right|_{s}=0, \\
\left.\left(\frac{\partial \psi}{\partial n}+i \sigma \psi\right)\right|_{S}=0 .
\end{gathered}
\]Sommerfield Radiation Condition (for external problems):

CSCAMMFAM04: 04/19/2004

\[
\lim _{r \rightarrow \infty}\left[r\left(\frac{\partial \psi_{s c a t}}{\partial r}-i k \psi_{s c a t}\right)\right]=0
\]

\section*{Green's Function and Identity}

Distributions of Monopoles and Dipoles
Free space Green's function:
\(\nabla^{2} G(\mathbf{x}, \mathbf{y})+k^{2} G(\mathbf{x}, \mathbf{y})=-\delta(\mathbf{x}-\mathbf{y})\),
\(G(\mathbf{x}, \mathbf{y})=\frac{\exp (i k|\mathbf{x}-\mathbf{y}|)}{4 \pi|\mathbf{x}-\mathbf{y}|}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}\).
Green's formula:
\[
\psi(\mathbf{y})=\int_{S}\left[\psi(\mathbf{x}) \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial n(\mathbf{x})}-G(\mathbf{x}, \mathbf{y}) \frac{\partial \psi(\mathbf{x})}{\partial n(\mathbf{x})}\right] \mathrm{d} S(\mathbf{x}), \quad \mathbf{y} \in \Omega .
\]

Boundary integral equation
\(\alpha \psi(\mathbf{y})=\int_{S}\left(\psi(\mathbf{x}) \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial n(\mathbf{x})}-G(\mathbf{x}, \mathbf{y}) \frac{\partial \psi(\mathbf{x})}{\partial n(\mathbf{x})}\right) \mathrm{d} S(\mathbf{x})\),
\(\Omega\)
\(\alpha= \begin{cases}\frac{1}{2} & \mathbf{y} \text { on a smooth part of the boundary } \\ \frac{y}{4 \pi} & \mathbf{y} \text { at a corner on the boundary } \\ 1 & \mathbf{y} \text { inside the domain } \\ \text { (C) } \text { Duraiswamı } \& \text { Gumerov, LUUS-2UU4 }\end{cases}\)

Volume source distribution
\[
\begin{gathered}
\psi(\mathbf{y})=\sum_{j=1}^{N} Q_{j} G\left(\mathbf{x}_{j}, \mathbf{y}\right), \quad \mathbf{y} \in \mathbb{R}^{3} \backslash\left\{\mathbf{x}_{j}\right\}, \\
\psi(\mathbf{y})=\int_{\bar{\Omega}} q(\mathbf{x}) G(\mathbf{x}, \mathbf{y}) \mathrm{d} V(\mathbf{x}), \quad \mathbf{y} \in \Omega, \quad \bar{\Omega} \cap \Omega=\emptyset .
\end{gathered}
\]

Single layer potential:
\[
\psi(\mathbf{y})=\int_{S} q_{\sigma}(\mathbf{x}) G(\mathbf{x}, \mathbf{y}) \mathrm{d} S(\mathbf{x}), \quad \mathbf{y} \in \Omega, \quad S=\partial \Omega
\]

Double layer potential:
\[
\psi(\mathbf{y})=\int_{S} q_{\mu}(\mathbf{x}) \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial n(\mathbf{x})} \mathrm{d} S(\mathbf{x}), \quad \mathbf{y} \in \Omega, \quad S=\partial \Omega
\]
© Duraiswami \& Gumerov, 2003-2004

Expansions in Spherical Coordinates

CSCAMM FAM04: 04/19/2004 © Duraiswami \& Gumerov, 2003-2004

\section*{Spherical Basis Functions}


Spherical Coordinates

Spherical Bessel Functions

Regular Basis Functions
\[
R_{n}^{m}(\mathbf{r})=j_{n}(k r) Y_{n}^{m}(\theta, \varphi)
\]

Singular Basis Functions
\[
S_{n}^{m}(\mathbf{r})=h_{n}(k r) Y_{n}^{m}(\theta, \varphi)
\]

Spherical Hankel Functions
Spherical Harmonics of the First Kind
\[
\begin{aligned}
Y_{n}^{m m}(\theta, \varphi) & =(-1)^{m} \sqrt{\frac{2 n+1}{4 \pi} \frac{(n-|m|)!}{(n+|m|)!}} P_{n}^{|m|}(\cos \theta) e^{i m \varphi} \\
n & =0,1,2, \ldots ; \quad m=-n, \ldots, n
\end{aligned}
\]

Associated Legendre Functions

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.




Isosurfaces For Singular Basis Functions


CSCAMM FAM 04: 04/19/2004 m © Duraiswami \& Gumerov, 2003-2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.


Absolute and uniform convergence
\[
\forall \epsilon>0, \quad \exists p(\epsilon), \quad\left|\psi(\mathbf{r})-\sum_{n=0}^{p-1} \sum_{m=-n}^{n} A_{n}^{m} F_{n}^{m}(\mathbf{r})\right|<\epsilon, \quad \forall \mathbf{r} \in \Omega,
\]
and
\[
\forall \epsilon>0, \quad \exists p(\epsilon), \quad \sum_{n=p}^{\infty} \sum_{m=-n}^{n}\left|A_{n}^{m} F_{n}^{m}(\mathbf{r})\right|<\epsilon, \quad \forall \mathbf{r} \in \Omega
\]

Plane Wave expansion:
\[
\begin{aligned}
& e^{i \mathbf{k} \cdot \mathbf{r}}=4 \pi \sum_{n=0}^{\infty} \sum_{m=-n}^{n} i^{n} Y_{n}^{-m}\left(\theta_{k}, \varphi_{k}\right) R_{n}^{m}(\mathbf{r}) \\
& \mathbf{k}=k \mathbf{s}, \quad \mathbf{s}=\left(\sin \theta_{k} \cos \varphi_{k}, \sin \theta_{k} \sin \varphi_{k}, \cos \theta_{k}\right)
\end{aligned}
\]

CSCAMM FAMO4. 1

\section*{Matrix Translations}

CSCAMM FAM04: 04/19/2004


Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.


\section*{Problem:}
- For the Helmholtz equation absolute and uniform convergence can be achieved only for
\(p>k a\). For large \(k a\) the FMM with constant \(p\) is
very expensive (comparable with straightforward methods);
inaccurate (since keeps much larger number of terms than required, which causes numerical instabilities).


CSCAMM FAM04: 04/19/2004 © Duraiswami \& Gumerov, 2003-2004


\section*{Complexity of Single Translation}



Complexity of the Optimized FMM for Fixed
\(\mathrm{kD}_{0}\) and Variable N


CSCAMM FAM04: 04/19/2004 \(\begin{array}{ccc}1000 & 10000 & 100000\end{array} \quad 1000000\)

Optimum Level for Low Frequencies


\section*{Volume Element Methods}
\[
\begin{gathered}
N=\left(\frac{N_{s}}{2 \pi} k D_{0}\right)^{3}, \quad k D_{0} \sim N^{1 / 3} \\
\\
v<1.5: \quad \text { ComplexityFMM } \sim\left(k D_{0}\right)^{2 v} 2^{\left(3-2 v v l_{\max } \sim\left(k D_{0}\right)^{2 v} N^{1-2 v / 3} \sim N\right.} \\
v=1.5: \quad \text { ComplexityFMM} \sim\left(k D_{0}\right)^{2 v} l_{\max } \sim\left(k D_{0}\right)^{2 v} \log N \sim N \log N \\
v>1.5: \\
\hline \quad \text { ComplexityFMM } \sim\left(k D_{0}\right)^{2 v} \sim N^{2 v / 3} \gg \log N .
\end{gathered}
\]

Critical Translation Exponent!


CSCAMM EAM04:04/19/2004


Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

What Happens if Truncation Number is Constant for All Levels?
\(N_{\text {oper }} \sim\left(k D_{0}\right)^{2 v} \sum_{l=2}^{l_{\text {max }}} 8^{l}=\left(k D_{0}\right)^{2 v} \sum_{l=2}^{l_{\text {気 }}} 2^{3 l} \sim\left(k D_{0}\right)^{2 v} 2^{3 l_{\text {mix }}} \sim\left(k D_{0}\right)^{2 v} N \sim N^{1+2 v / 3}\).
```

O-v< 1.5: N< ComplexityFMM}<<
v=1.5: ComplexityFMM ~N N
O

```

\section*{Surface Data Distributions}
\[
\begin{aligned}
& N_{l} \sim 4^{-l} N, \quad l_{\max } \sim \frac{1}{2} \log N \\
& p_{l} \sim 2^{-l} k D_{0}, \\
N_{o p e r} \sim\left(k D_{0}\right)^{2 v} & \sum_{l=2}^{l} 2^{-2 v l} 4^{l}=\left(k D_{0}\right)^{2 v} \sum_{l=2}^{l=} 2^{(2-2 v) l} .
\end{aligned}
\]

Q \(v=1: \quad\) ComplexityFMM \(\sim\left(k D_{0}\right)^{2 v} l_{\max } \sim\left(k D_{0}\right)^{2 v} \log N\)

Boundary Element Methods:
\[
N=\left(\frac{N_{s}}{2 \pi} k D_{0}\right)^{2}, \quad k D_{0} \sim N^{1 / 2}
\]

Q \(v=1\) : ComplexityFMM \(\sim\left(k D_{0}\right)^{2 v} l_{\max } \sim\left(k D_{0}\right)^{2 v} \log N \sim N \log N\)
- \(v>1:\) ComplexityFMM \(\sim\left(k D_{0}\right)^{2 v} \sim N^{v} \gg N \log N\).
- \(v>1\) : ComplexityFM

CSCAMM FAM04: 04/19/2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

\author{
Fast Translation Methods
}

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

\section*{Translation Methods}
- \(\mathrm{O}\left(\mathrm{p}^{5}\right)\) : Matrix Translation with Computation of Matrix Elements Based on ClebschGordan Coefficients;
- \(\mathrm{O}\left(\mathrm{p}^{4}\right)\) (Low Asymptotic Constant): Matrix Translation with Recursive Computation of Matrix Elements
- \(\mathrm{O}\left(\mathrm{p}^{3}\right)\) (Low Asymptotic Constants):

Rotation-Coaxial Translation Decomposition with Recursive Computation of Matrix Elements; Sparse Matrix Decomposition;
- \(\mathrm{O}\left(\mathrm{p}^{2} \log ^{\beta} \mathrm{p}\right)\)

Rotation-Coaxial Translation Decomposition with Structured Matrices for Rotation and Fast Legendre Transform for Coaxial Translation;
Translation Matrix Diagonalization with Fast Spherical Transform;
- Asymptotic Methods;

Diagonal Forms of Translation Operators with Spherical Filtering.
\(\mathrm{O}\left(\mathrm{p}^{3}\right)\) Methods
- Dis
\begin{tabular}{ll} 
\\
CSCAMMEAM04:04/19/2004 & © Duraiswami \& Gumerov, 2003-2004 \\
\hline
\end{tabular}

CSCAMM FAM04: 04/19/2004 © Duraiswami \& Gumerov, 2003-2004


\section*{Sparse Matrix Decomposition}
\[
\begin{array}{ll}
(\mathbf{R} \mid \mathbf{R})(\mathbf{t})=(\mathbf{S} \mathbf{S})(\mathbf{t})=\sum_{n=0}^{\infty} \frac{(k t)^{n}}{n!} \mathbf{D}_{\mathbf{t}}^{n}=e^{k t \mathbf{D}_{\mathbf{t}}}=\Lambda_{r}\left(k t,-i \mathbf{D}_{\mathbf{t}}\right) \\
(\mathbf{S} \mid \mathbf{R})(\mathbf{t})=\Lambda_{s}\left(k t,-i \mathbf{D}_{\mathbf{t}}\right) & \begin{array}{l}
\text { Matrix-vector } \\
\text { products with these }
\end{array} \\
\Lambda_{r}\left(k t,-i \mathbf{D}_{\mathbf{t}}\right)=\sum_{n=0}^{\infty}(2 n+1) i^{n} j_{n}(k t) P_{n}\left(-i \mathbf{D}_{\mathbf{t}}\right)^{2} \quad \begin{array}{l}
\text { matrices computed } \\
\text { recursively }
\end{array} \\
\Lambda_{s}\left(k t,-i \mathbf{D}_{\mathbf{t}}\right)=\sum_{n=0}^{\infty}(2 n+1) i^{n} h_{n}(k t) P_{n}\left(-i \mathbf{D}_{\mathbf{t}}\right)^{?}
\end{array}
\]
```

(\mathbf{D}}\mathbf{t}\mathbf{C}\mp@subsup{)}{n}{m}=\frac{1}{2t}[(\mp@subsup{t}{x}{}+i\mp@subsup{t}{y}{})(\mp@subsup{C}{n-1}{m+1}\mp@subsup{b}{n}{m}-\mp@subsup{C}{n+1}{m+1}\mp@subsup{b}{n+1}{-m-1})+(\mp@subsup{t}{x}{}-i\mp@subsup{t}{y}{})(\mp@subsup{C}{n-1}{m-1}\mp@subsup{b}{n}{-m}-\mp@subsup{C}{n+1}{m-1}\mp@subsup{b}{n+1}{m-1})
+\frac{tz}{t}(\mp@subsup{a}{n}{m}\mp@subsup{C}{n+1}{m}-\mp@subsup{a}{n-1}{m}\mp@subsup{C}{n-1}{m}),\quadm=0,\pm1,\pm2,···,\quadn=|m|,|m|}+1,

```

CSCAMM FAM04: 04/19/2004

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.
Fast Coaxial Translation
\((\mathbf{R} \mid \mathbf{R})_{(\text {coax) }}^{\left(p p^{\prime}\right)}(t)=(\mathbf{S} \mid \mathbf{S})_{(\text {coax) }}^{\left(p p^{\prime}\right)}(t)=\mathbf{i}^{(p)} \underline{\mathbf{L}}^{(p)} \mathbf{W} \Lambda_{r}^{\left(p+p^{\prime}-1\right)}(k t)\left(\underline{\mathbf{L}}^{\left(p^{\prime}\right)}\right)^{T} \mathbf{i}^{\left(p^{\prime}\right)}\),
\(\left.\begin{array}{l}(\mathbf{S} \mid \mathbf{R})_{(\text {coax })}^{\left(p p^{\prime}\right)}(t)=\mathbf{i}^{(p)} \underline{\mathbf{L}}^{(p)} \mathbf{W} \Lambda_{s}^{\left(p+p^{\prime}-1\right)}(k t)\left(\underline{\mathbf{L}}^{\left(p^{\prime}\right)}\right)\end{array}\right)^{T} \mathbf{i}^{\left(p^{\prime}\right)}\).

Fast multiplication of the Legendre and transposed Legendre matrices can be performed via the forward and inverse FAST LEGENDRE TRANSFORM (FLT) with complexity O( \(p^{2} \log ^{2} p\) )

Healy et al Advances in Computational Mathematics 21: 59-105, 2004.
CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Diagonalization of General Translation Operator


Matrices for the forward and
Diagonal matrices
inverse and Spherical Transform

FAST SPHERICAL TRANSFORM (FST) can be performed with complexity \(\mathrm{O}\left(\mathrm{p}^{2} \log ^{2} \mathrm{p}\right)\)

Healy et al Advances in Computational Mathematics 21: 59-105, 2004

Method of Signature Function
(Diagonal Forms of the Translation Operator)
\[
\begin{gathered}
\psi(\mathbf{r})=\frac{1}{4 \pi} \int_{S_{u}} e^{i \mathbf{k} \cdot r \cdot \Psi^{\prime}(\mathbf{s}) \mathrm{d} S(\mathbf{s}),} \quad \text { Regular Solution } \\
\psi^{(p)}(\mathbf{r})=\frac{1}{4 \pi} \int_{S_{s}} \Lambda_{s}^{(p)}(\mathbf{r} ; \mathbf{s}) \Psi^{\prime}(\mathbf{s}) \mathrm{d} S(\mathbf{s}), \\
\Lambda_{r}(\mathbf{r} ; \mathbf{s})=\sum_{n=0}^{\infty}(2 n+1) i^{n} j_{n}(k r) P_{n}\left(\frac{\mathbf{r} \cdot \mathbf{s}}{r}\right) \\
\Lambda_{s}^{(p)}(\mathbf{r} ; \mathbf{s})=\sum_{n=0}^{p-1}(2 n+1) i^{n} h_{n}(k r) P_{n}\left(\frac{\mathbf{r} \cdot \mathbf{s}}{r}\right) . \\
\widehat{\Psi}^{\prime}(\mathbf{s})=(\mathcal{S} \mid \mathcal{S})(\mathbf{t})\left[\Psi^{\prime}(\mathbf{s})\right]=(\mathcal{R} \mid \mathcal{R})(\mathbf{t})\left[\Psi^{\prime}(\mathbf{s})\right]=e^{i k \mathbf{s} \cdot \mathbf{t}} \Psi^{\prime}(\mathbf{s}), \\
\hat{\Psi}_{(p)}(\mathbf{s})=(\mathcal{S} \mid \mathcal{R})(\mathbf{t})\left[\Psi^{\prime}(\mathbf{s})\right]=\Lambda_{s}^{(p)}(\mathbf{t} ; \mathbf{s}) \Psi^{\prime}(\mathbf{s}) .
\end{gathered}
\]

Final Summation and Initial Expansion
\[
\begin{gathered}
\psi(\mathbf{r})=\frac{1}{4 \pi} \sum_{j=0}^{N_{c}-1} w_{j} e^{i k \mathbf{s}_{j} \cdot \mathbf{r}} \Psi^{\prime}\left(\mathbf{s}_{j}\right)+\epsilon_{c}, \quad \mathbf{s}_{j} \in S_{u} \\
G\left(\mathbf{r}-\mathbf{r}_{s}\right) \rightleftarrows \Psi_{(0)}^{\prime}\left(\mathbf{s}_{j} ; \mathbf{r}_{s}-\mathbf{r}_{*}\right)=\frac{i k}{4 \pi} e^{-i k \mathbf{s}_{j} \cdot\left(\mathbf{r}_{s}-\mathbf{r}_{*}\right)}
\end{gathered}
\]

CSCAMMEAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

The FMM with Band-Unlimited Signature
Functions ( \(\mathrm{O}\left(\mathrm{p}^{2}\right)\) method)


\section*{Deficiencies}
- Low Frequencies;
- High Frequencies;
- Constant p;
- Instabilities after two or three levels of translations.

\section*{Methods to Fix:}
- Use of Band-limited functions;
- Error control via band-limits;
- Requires filtering procedures (complexity \(\mathrm{O}\left(\mathrm{p}^{2} \log ^{2} \mathrm{p}\right)\) or \(\left.\mathrm{O}\left(\mathrm{p}^{2} \log p\right)\right)\) with large asymptotic constants;
- The length of the representation is changed via interpolation/anterpolation procedures.

Error Bounds


\section*{Approximation of the Error}
\[
p=\left\{\left[\frac{1}{\ln \sigma} \ln \frac{1}{\epsilon k a\left(1-\sigma^{-1}\right)^{3 / 2}}+1\right]^{4}+\left[k a+\frac{1}{2}\left(3 \ln \frac{1}{\epsilon \sigma}\right)^{2 / 3}(k a)^{1 / 3}\right]^{4}\right\}^{1 / 4}
\]


CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

We proved that for source summation problems the truncation numbers can be selected based on the above chart when using translations with rectangularly truncated matrices


CSCAMM FAM04: 04/19/2004
Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.

\section*{Multiple Scattering Problem}

\[
\begin{aligned}
& \text { T-Matrix Method } \\
& \text { Scattered Field Decomposition } \\
& \psi_{s c a t}(\mathbf{r})=\sum_{p=1}^{N} \psi_{p}(\mathbf{r}), \quad \lim _{r \rightarrow \infty} r\left(\frac{\partial \psi_{p}}{\partial r}-i k \psi_{p}\right)=0, \quad p=1, \ldots, N . \\
& \psi_{p}(\mathbf{r})=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} A_{n}^{(p) m} S_{n}^{S_{n}^{\prime}}\left(\mathbf{r}-\mathbf{r}_{p}^{\prime}\right), \quad S_{n}^{m}(\mathbf{r})=h_{n}(k r) Y_{n}^{m}(\theta, \varphi) . \\
& \text { Expansion Coefficients } \\
& \text { Spherical Harmonics } \\
& \mathbf{A}=\left(A_{0}^{0}, A_{1}^{-1}, A_{1}^{0}, A_{1}^{1}, A_{2}^{-2}, A_{2}^{-1}, A_{2}^{0}, A_{2}^{1}, A_{2}^{2}, \ldots\right)^{T}, \\
& \text { Vector Form: } \\
& \psi_{p}(\mathbf{r})=\overline{\mathbf{A}^{(p)}} \cdot \mathbf{S}\left(\mathbf{r}-\mathbf{r}_{p}^{\prime}\right) . \\
& \text { CSCAMMEAM04: 04/19/2004 dot pnoduntamı \& Gumerov, LUUJ- } \angle 004
\end{aligned}
\]

Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.


\section*{Reflection Method \& \\ Krylov Subspace Method (GMRES)}

Reflection (Simple Iteration) Method:
\[
\begin{aligned}
\mathbf{A}_{j}^{(q)} & =\mathbf{T}^{(q)}\left[\mathbf{E}^{(i n)}\left(\mathbf{r}_{q}^{\prime}\right)+\mathbf{B}_{j}^{(q)}\right], \\
\mathbf{B}_{j+1}^{(q)} & =\sum_{p \neq q}(\mathbf{S} \mid \mathbf{R})\left(\mathbf{r}_{q}^{\prime}-\mathbf{r}_{p}^{\prime}\right) \mathbf{A}_{j}^{(p)}, \\
\left|\mathbf{A}_{j}^{(q)}-\mathbf{A}_{j+1}^{(q)}\right| & <\epsilon, \quad q=1, \ldots, N .
\end{aligned}
\]

General Formulation (used in GMRES)
\[
\left[\mathbf{I}-\mathbf{T}^{(q)} \sum_{p \neq q}(\mathbf{S} \mid \mathbf{R})\left(\mathbf{r}_{q}^{\prime}-\mathbf{r}_{p}^{\prime}\right)\right] \mathbf{A}^{(q)}=\mathbf{T}^{(q)} \mathbf{E}^{(i n)}\left(\mathbf{r}_{q}^{\prime}\right) .
\]

Incident Wave


Presented at the Center for Scientific Computing and Mathematical Modeling, University of Maryland, College Park Copyright, Nail A. Gumerov and Ramani Duraiswami, 2002-2004.



\author{
More About This Problem in Our Talk Next Week
}```

