Fast Multipole Methods for The Laplace Equation

Ramani Duraiswami Nail Gumerov

CSCAMM FAM04: 04/19/2004

© Duraiswami & Gumerov, 2003-2004

Outline

- 3D Laplace equation and Coulomb potentials
- Multipole and local expansions
- Special functions
 - Legendre polynomials
 - □ Associated Legendre functions
 - □ Spherical harmonics
- Translations of elementary solutions
- Complexity of FMM
- Reducing complexity
- Rotations of elementary solutions
- Coaxial Translation-Rotation decomposition
- Faster Translation techniques

CSCAMM FAM04: 04/19/2004

Review

- FMM aims at accelerating the matrix vector product
- Matrix entries determined by a set of source points and evaluation points (possibly the same)
- Function Φ has following point-centered representations about a given point x_{*}
 - Local (valid in a neighborhood of a given point)

$$\boldsymbol{\Phi} = \begin{pmatrix} \Phi(\mathbf{y}_1, \mathbf{x}_1) & \Phi(\mathbf{y}_1, \mathbf{x}_2) & \dots & \Phi(\mathbf{y}_1, \mathbf{x}_N) \\ \Phi(\mathbf{y}_2, \mathbf{x}_1) & \Phi(\mathbf{y}_2, \mathbf{x}_2) & \dots & \Phi(\mathbf{y}_2, \mathbf{x}_N) \\ \dots & \dots & \dots & \dots \\ \Phi(\mathbf{y}_M, \mathbf{x}_1) & \Phi(\mathbf{y}_M, \mathbf{x}_2) & \dots & \Phi(\mathbf{y}_M, \mathbf{x}_N) \end{pmatrix}$$

$$X = \{ \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N \}, \quad \mathbf{x}_i \in \mathsf{R}^d, \quad i = 1, ..., N, Y = \{ \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_M \}, \quad \mathbf{y}_j \in \mathsf{R}^d, \quad j = 1, ..., M.$$

$$\mathbf{v}_j = \sum_{i=1}^N u_i \Phi(\mathbf{y}_j, \mathbf{x}_i), \quad j = 1, ..., M.$$

- □ Far-field or multipole (valid outside a neighborhood of a given point)
- $\hfill \Box$ In many applications Φ is singular
- Representations are usually series
 - □ Could be integral transform representations
- Representations are usually approximate
 - □ Error bound guarantees the error is below a specified tolerance

CSCAMM FAM04: 04/19/2004

© Duraiswami & Gumerov, 2003-2004

Review

• Factorization trick is at core of the FMM speed up

 $\Phi(\mathbf{y}_j, \mathbf{x}_i) = \sum_{m=0}^{p-1} A_m(\mathbf{x}_i) F_m(\mathbf{y}_j) + Error(p, \mathbf{x}_i, \mathbf{y}_j).$

$$\begin{aligned} \mathbf{v}_j &= \sum_{i=1}^N u_i \Phi\left(\mathbf{y}_j, \mathbf{x}_i\right) = \sum_{i=1}^N u_i \sum_{m=0}^{p-1} A_m(\mathbf{x}_i) F_m\left(\mathbf{y}_j\right) + \sum_{i=1}^N u_i Error(p, \mathbf{x}_i, \mathbf{y}_j) \\ &= \sum_{m=0}^{p-1} B_m F_m\left(\mathbf{y}_j\right) + Error_j(p, N), \quad j = 1, ..., M. \end{aligned}$$

- Representations we use are factored ... separate points x_i and y_j
- Data is partitioned to organize the source points and evaluation points so that for each point we can separate the points over which we can use the factorization trick, and those we cannot.
- Hierarchical partitioning allows use of different factorizations for different groups of points
- Accomplished via MLFMM discussed yesterday
- Today concrete example for Laplace equation/Coulomb potentials

CSCAMM FAM04: 04/19/2004

- Many particles distributed in space
- Particles are moving and exert a force on each other
- Simplest case this force obeys an inverse-square law (gravity, coulombic interaction)
- Goal of computations $\frac{d^2 \mathbf{x}_i}{dt^2} = F_i$,
- Force is
- After time step, particles move $F_{i} = \sum_{\substack{j=1 \ j \neq i}}^{N} q_{i} q_{j} \frac{(\mathbf{x}_{i} - \mathbf{x}_{j})}{|\mathbf{x}_{i} - \mathbf{x}_{j}|^{3}}$
- Recompute force and iterate

CSCAMM FAM04: 04/19/2004

What is needed for the FMM

- Local expansion
- Far-field or multipole expansion
- Translations
 Multipole-to-multipole (S|S)
 Local-to-local (R|R)
 Multipole-to-local (S|R)
 - Error bounds

CSCAMM FAM04: 04/19/2004

© Duraiswami & Gumerov, 2003-2004

Translation and Differentiation Properties for Laplace Equation

If

 $\nabla^2 \Phi(\mathbf{r}) = \mathbf{0}, \quad \mathbf{r} \in \Omega.$

then shifted function $\Phi({\bm r}-{\bm r}_0)$ also satisfies the Laplace equation

$$abla^2 \Phi(\mathbf{r} - \mathbf{r}_0) = \mathbf{0}, \quad \mathbf{r} - \mathbf{r}_0 \in \mathbf{\Omega}.$$

Also the Laplace operator is commutative with differential operators

$$D_x = \frac{\partial}{\partial x}, \quad D_y = \frac{\partial}{\partial y}, \quad D_z = \frac{\partial}{\partial z}, \quad \text{or} \quad D_t = \mathbf{t} \cdot \nabla,$$

So

$$D_{\mathbf{t}}\nabla^{2}\Phi(\mathbf{r}) = \nabla^{2}D_{\mathbf{t}}\Phi(\mathbf{r}).$$

CSCAMM FAM04: 04/19/2004

Introduction of Multipoles for Laplace Equation

 $\Phi_n(\mathbf{r}) = (-1)^n D_{\mathbf{t}_1} D_{\mathbf{t}_2} \dots D_{\mathbf{t}_n} \Phi(\mathbf{r})$

also satisfy the Laplace equation. In case when $\Phi(\mathbf{r}) = G(\mathbf{r}) = |\mathbf{r}|^{-1}$ functions

$$G_n(\mathbf{r}) = (-1)^n D_{\mathbf{t}_1} D_{\mathbf{t}_2} \dots D_{\mathbf{t}_n} \frac{1}{|\mathbf{r}|}, \quad |\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} \neq 0$$

are called MULTIPOLES OF DEGREE *n* centered at $\mathbf{r} = \mathbf{0}$. Vectors $\mathbf{t}_1, \mathbf{t}_2, ..., \mathbf{t}_n$ are called multole generating vectors. Also $G_n(\mathbf{r})$ can be represented as

$$G_n(\mathbf{r}) = \sum_{i+j+k=n} Q_{ijk}^{(n)} \frac{\partial^n}{\partial x^i \partial y^j \partial z^k} \frac{1}{|\mathbf{r}|},$$

where $Q_{ijk}^{(n)}$ are called 'components of the multipole momentum'.

n = 0 : `monopole' n = 1 : `dipole' n = 2 : `quadrupole' n = 3 : `octupole'.

CS

Multipole Expansion of Laplace Equation Solutions

$$\Phi(\mathbf{r}) = \sum_{n=0}^{\infty} b_n G_n(\mathbf{r}),$$

$$G_n(\mathbf{r}) = \sum_{i+j+k=n} Q_{ijk}^{(n)} \frac{\partial^n}{\partial x^i \partial y^j \partial z^k} \frac{1}{|\mathbf{r}|}.$$

CSCAMM FAM04: 04/19/2004

© Duraiswami & Gumerov, 2003-2004

4

Legendre Polynomials

Legendre polynomials $P_n(\mu)$ can be introduced via generating function

$$\frac{1}{\sqrt{1-2\mu x+x^2}} = \begin{cases} \sum_{n=0}^{\infty} P_n(\mu) x^n, & |x| < 1, \\ \sum_{n=0}^{\infty} P_n(\mu) x^{-n-1}, & |x| > 1. \end{cases}$$

First few polynomials

$$P_0(\mu) = 1,$$

$$P_1(\mu) = \mu = \cos\theta,$$

$$P_2(\mu) = \frac{1}{2}(3\mu^2 - 1) = \frac{1}{4}(3\cos 2\theta + 1),$$

CSCAMM FAM04: 04/19/2004

CSCAMM FAM04: 04/19/2004

Associated Legendre Functions

$$\begin{split} P_n^m(\mu) &= \frac{(-1)^m}{2^m} \frac{(n+m)!}{(n-m)!m!} (1-\mu^2)^{m/2} F\left(m-n,m+n+1;m+1;\frac{1-\mu}{2}\right) \\ &= \frac{(-1)^m}{2^m} \frac{(n+m)!}{(n-m)!m!} (1-\mu^2)^{m/2} \sum_{l=0}^{n-m} \frac{(-1)^l (n-m-l+1)_l (n+m+1)_l}{2^l l! (m+1)_l} (1-\mu)^l, \end{split}$$

where $(n)_i$ is the Pochhammer's symbol:

$$(n)_0 = 1, \quad (n)_l = \frac{(n+l-1)!}{(n-1)!}$$

This formula yields the following particular functions:

$$P_{1}^{1}(\mu) = -(1-\mu^{2})^{1/2}, P_{2}^{1}(\mu) = -3\mu(1-\mu^{2})^{1/2}, P_{2}^{2}(\mu) = 3(1-\mu^{2}).$$

$$(P_{n}^{m}, P_{l}^{m}) = \int_{-1}^{1} P_{n}^{m}(\mu)P_{l}^{m}(\mu)d\mu = \frac{2}{2n+1}\frac{(n+m)!}{(n-m)!}\delta_{nl}.$$
Orthogonal!
$$Orthogonal!$$

$$Orthogonal!$$
© Duraiswami & Gumerov, 2003-2004

Orthonormality of Spherical Harmonics

The scalar product of two spherical harmonics in $L_2(S_u)$ is

$$\left(Y_n^m, Y_{n'}^{m'}\right) = \int_0^\pi \sin\theta d\theta \int_0^{2\pi} Y_n^m(\theta, \varphi) \bar{Y}_{n'}^{m'}(\theta, \varphi) \mathrm{d}\varphi = \delta_{mm'} \delta_{nn'}.$$

Expansion of an arbitrary surface function over the basis of spherical harmonics:

$$F(\theta, \varphi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} F_n^m Y_n^m(\theta, \varphi).$$
$$\left(F, Y_{n'}^{m'}\right) = \int_0^{\pi} \sin\theta d\theta \int_0^{2\pi} F(\theta, \varphi) Y_{n'}^{-m'}(\theta, \varphi) d\varphi.$$
$$\left(F, Y_{n'}^{m'}\right) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} F_n^m \left(Y_n^m, Y_{n'}^{m'}\right) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} F_n^m \delta_{mm'} \delta_{nn'} = F_{n'}^{m'}.$$
$$F_{n'}^{m'} = \int_0^{\pi} \sin\theta d\theta \int_0^{2\pi} F(\theta, \varphi) Y_{n'}^{-m'}(\theta, \varphi) d\varphi.$$

CSCAMM FAM04: 04/19/2004

Error bound

Series converge rapidly
 E.g., For multipole expansion we have

$$\Phi(P) = \sum_{i=1}^{k} \frac{q_i}{\|P_i - P\|}$$

potential due to a set of k sources of strengths $\{q_i, i = 1, ..., k\}$ at $\{P_i = (r_i, \theta_i, \phi_i), i = 1, ..., k\}$, with $|r_i| < a$. Then for $P = (r, \theta, \phi) \in \mathbb{R}^3$ with |r| > a,

$$\begin{split} \Phi(P) &= \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{M_{n}^{m}}{r^{n+1}} Y_{n}^{m}(\theta, \phi), \\ M_{n}^{m} &= \sum_{i=1}^{k} (-1)^{m} q_{i} * r_{i}^{n} * Y_{n}^{-m}(\theta_{i}, \phi_{i}) \,. \\ \left| \Phi(P) - \sum_{n=0}^{p} \sum_{m=-n}^{n} \frac{M_{n}^{m}}{r^{n+1}} Y_{n}^{m}(\theta, \phi) \right| \leq \frac{A}{r-a} (\frac{a}{r})^{p+1}, \\ A &= \sum_{k=0}^{k} |q_{i}|. \end{split}$$

CSCAMM FAM04: 04/19/2004

`Multipole expansion` is S-expansion

Compare

$$\frac{1}{4\pi|\mathbf{r}-\mathbf{r}_0|} = \sum_{n=0}^{\infty} b_n G_n(\mathbf{r}), \quad G_n(\mathbf{r}) = \sum_{i+j+k=n} Q_{ijk}^{(n)} \frac{\partial^n}{\partial x^i \partial y^j \partial z^k} \frac{1}{|\mathbf{r}|}.$$

and

$$\frac{1}{4\pi|\mathbf{r}-\mathbf{r}_0|} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{1}{2n+1} R_n^{-m}(\mathbf{r}_0) S_n^m(\mathbf{r}), \quad r > r_0.$$

$$b_n \sum_{i+j+k=n} \mathcal{Q}_{ijk}^{(n)} \frac{\partial^n}{\partial x^i \partial y^j \partial z^k} \frac{1}{|\mathbf{r}|} = \sum_{m=-n}^n \frac{1}{2n+1} R_n^{-m}(\mathbf{r}_0) S_n^m(\mathbf{r}).$$

Generally

$$\sum_{i+j+k=n} \mathcal{Q}_{ijk}^{(n)} \frac{\partial^n}{\partial x^i \partial y^j \partial z^k} \frac{1}{|\mathbf{r}|} = \sum_{m=-n}^n q_n^m S_n^m(\mathbf{r}) = \frac{1}{r^{n+1}} \sum_{m=-n}^n q_n^m Y_n^m(\theta, \varphi).$$

CSCAMM FAM04: 04/19/2004

© Duraiswami & Gumerov, 2003-2004

R- and S- expansions of arbitrary solutions of the 3D Laplace equation

$$\Phi(\mathbf{r}) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} [A_n^m R_n^m(\mathbf{r}) + B_n^m S_n^m(\mathbf{r})],$$

Functions regular at $\mathbf{r} = \mathbf{0}$:

$$\Phi(\mathbf{r}) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} A_n^m R_n^m(\mathbf{r}),$$

Functions decaying at $|\mathbf{r}| \rightarrow \infty$:

$$\Phi(\mathbf{r}) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} B_n^m S_n^m(\mathbf{r}).$$

/2004 © Duraiswami & Gumerov, 2003-2004

CSCAMM FAM04: 04/19/2004

Translations of elementary solutions of the 3D Laplace equation $S_n^m(\mathbf{r}_p) = \sum_{l=0}^{\infty} \sum_{s=-l}^{l} (S|R)_{ln}^{sm}(\mathbf{r}_{pq}^l) R_l^s(\mathbf{r}_q), \quad |\mathbf{r}_q| < |\mathbf{r}_{pq}^l|, \quad p \neq q.$ $S_n^m(\mathbf{r}_p) = \sum_{l=0}^{\infty} \sum_{s=-l}^{l} (S|S)_{ln}^{sm}(\mathbf{r}_{pq}^l) S_l^s(\mathbf{r}_q), \quad |\mathbf{r}_q| > |\mathbf{r}_{pq}^l|,$ $R_n^m(\mathbf{r}_p) = \sum_{l=0}^{\infty} \sum_{s=-l}^{l} (R|R)_{ln}^{sm}(\mathbf{r}_{pq}^l) R_l^s(\mathbf{r}_q).$ For a p-truncated expansion (E/F) is a $p^2 \times p^2$ matrix

See Tang 03 or Greengard 89 for explicit expressions © Duraiswami & Gumerov, 2003-2004

Translation of a Multipole Expansion

Let

0

CSCAMM FAM04: 04/19/2004

$$\Phi(P) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{O_n^m}{r'^{n+1}} Y_n^m(\theta', \phi'),$$

Where $P - Q = (r', \theta', \phi')$. Then the potential ϕ can be expressed as,

$$\Phi(P) = \sum_{j=0}^{\infty} \sum_{k=-j}^{j} \frac{M_j^k}{r^{j+1}} Y_j^k(\theta, \phi),$$

$$M_{j}^{k} = \sum_{n=0}^{j} \sum_{m=\max(k+n-j,-n)}^{\min(k+j-n,n)} \frac{O_{j-n}^{k-m}i^{|k|-|m|-|k-m|}A_{n}^{m}A_{j-n}^{k-m}\rho^{n}Y_{n}^{-m}(\alpha,\beta)}{A_{j}^{k}},$$

$$A_{n}^{m} = \frac{(-1)^{n}}{\sqrt{(n-m)!(n+m)!}} M = SS(\rho,\alpha,\beta) * O$$
(© Duraiswami & Gumerov, 2003-2004

Translation of a Local Expansion

Suppose that

$$\Phi(P) = \sum_{n=0}^{p} \sum_{m=-n}^{n} O_n^m r'^n Y_n^m(\theta', \phi')$$

is a local expansion centered at $Q = (\rho, \alpha, \beta)$, Where $P = (r, \theta, \phi)$, and $P - Q = (r', \theta', \phi')$. Then the local expansion centered at origin is

$$\Phi(P) = \sum_{j=0}^{p} \sum_{k=-j}^{j} L_j^k r^j Y_j^k(\theta, \phi),$$

where

$$L_{j}^{k} = \sum_{n=j}^{p} \sum_{m=k-n+j}^{k-j+n} \frac{O_{n}^{m} i^{|m|-|m-k|-|k|} A_{j}^{k} A_{n-j}^{m-k} \rho^{n-j} Y_{n-j}^{m-k}(\alpha,\beta)}{(-1)^{n+j} A_{n}^{m}},$$

$$I = D D (\alpha, \alpha, \beta) + O$$

$$L = RR(\rho, \alpha, \beta) * O$$
© Duraiswami & G

CSCAMM FAM04: 04/19/2004

© Duraiswami & Gumerov, 2003-2004

Complexity Analysis

Step 1, Forming Expansions $O(Np^2)$. Step 2, Upward pass with Matrix based S|S translations

$$\sum_{l=2}^{n-1} 8 * 8^{l} * p^{4} = \frac{8^{3} - 8^{n+1}}{1 - 8} p^{4} \approx \frac{8}{7} 8^{n} p^{4} = \frac{8}{7} \frac{N}{s} p^{4}.$$

Step 3, Downward pass with matrix based S|R and R|R translations

$$\sum_{l=2}^{n} 8^{l} * p^{4} + \sum_{l=2}^{n} 8^{l} * p^{4} * 189 \approx \frac{8}{7} * 8^{n} * 190p^{4} = \frac{1520}{7} \frac{N}{s} p^{4}.$$

Step 4, Evaluate R expansions at points $O(Np^2)$ Step 5, Sum missed neighbor points O(27Ns)The total cost for all five steps is approximately

$$2Np^2 + \frac{1528}{7}\frac{N}{s}p^4 + 27Ns.$$

With $s \approx \sqrt{\frac{1528}{189}}p^2$, the total number of operations is approximately $156Np^2$. CSCAMM FAM04: 04/19/2004 © Duraiswami & Gumerov, 2003-2004

CSCAMM FAM04: 04/19/2004

Coaxial translation operator has invariant subspaces at fixed order, m, while the rotation operator has invariant subspaces at fixed degree, n.

Coaxial Translation:

$$(\mathbf{S}|\mathbf{R}) = (\mathbf{S}|\mathbf{R})^0 \oplus (\mathbf{S}|\mathbf{R})^{\pm 1} \oplus \dots = \sum_{m=-\infty}^{\infty} \oplus (\mathbf{S}|\mathbf{R})^m,$$

Rotation

$$(\mathbf{S}|\mathbf{R}) = (\mathbf{S}|\mathbf{R})_0 \oplus (\mathbf{S}|\mathbf{R})_1 \oplus \dots = \sum_{n=0}^{\infty} \oplus (\mathbf{S}|\mathbf{R})_n,$$

Each can be done in p operations which cost $O(p^2)$ resulting in $O(p^3)$ complexity

© Duraiswami & Gumerov, 2003-2004

CSCAMM FAM04: 04/19/2004

Other Fast translation schemes: Elliot and Board (1996)

Renormalized S- and R- functions

Definition:

$$\widetilde{S}_{n}^{m}(\mathbf{r}) = O_{n}^{m}(\mathbf{r}) = \frac{(-1)^{n} i^{|m|}}{\alpha_{n}^{m}} \sqrt{\frac{4\pi}{2n+1}} S_{n}^{m}(\mathbf{r}) = \frac{(-1)^{n} i^{|m|}}{\alpha_{n}^{m}} \sqrt{\frac{4\pi}{2n+1}} \frac{1}{r^{n+1}} Y_{n}^{m}(\theta, \varphi),$$

$$\widetilde{R}_n^m(\mathbf{r}) = I_n^m(\mathbf{r}) = i^{-|m|} \alpha_n^m \sqrt{\frac{4\pi}{2n+1}} R_n^m(\mathbf{r}) = i^{-|m|} \alpha_n^m \sqrt{\frac{4\pi}{2n+1}} r^n Y_n^m(\theta, \varphi),$$

where

$$\alpha_n^m = \alpha_n^{-m} = \frac{(-1)^n}{\sqrt{(n-m)!(n+m)!}}$$

CSCAMM FAM04: 04/19/2004

Other Fast translation schemes: Elliot and Board (1996)

In the renormalized basis translation matrices are simple

$$\begin{split} & \left(\widetilde{S}|\widetilde{R}\right)_{n'n}^{m'm}(\mathbf{t}) = (O|I)_{n'n}^{m'm}(\mathbf{t}) = O_{n+n'}^{m-m'}(\mathbf{t}) = \widetilde{S}_{n+n'}^{m-m'}(\mathbf{t}), \\ & \left(\widetilde{S}|\widetilde{S}\right)_{n'n}^{m'm}(\mathbf{t}) = (O|O)_{n'n}^{m'm}(\mathbf{t}) = I_{n'-n}^{m-m'}(\mathbf{t}) = \widetilde{R}_{n'-n}^{m-m'}(\mathbf{t}), \\ & \left(\widetilde{R}|\widetilde{R}\right)_{n'n}^{m'm}(\mathbf{t}) = (I|I)_{n'n}^{m'm}(\mathbf{t}) = I_{n-n'}^{m-m'}(\mathbf{t}) = \widetilde{R}_{n-n'}^{m-m'}(\mathbf{t}). \end{split}$$

These are structured matrices (2D Toeplitz-Hankel type) Fast translation procedures are possible (e.g. see $O(p^{2}logp)$ algorithm in **W.D. Elliott & J.A. Board, Jr.:** ``Fast Fourier Transform Accelerated Fast Multipole Algorithm" *SIAM J. Sci. Comput.* Vol. 17, No. 2, pp. 398-415, 1996). However, there are some stability issues reported.

CSCAMM FAM04: 04/19/2004

© Duraiswami & Gumerov, 2003-2004

Structured matrix based translation

- Tang 03
- Idea: use the rotation-coaxial translation method, and decompose resulting matrices into structured matrices
- Cost $O(p^2 \log p)$
- Details in Tang's thesis.

http://www.umiacs.umd.edu/~ramani/pubs/zhihui_thesis.pdf

Complexity

The total cost of the original algorithm is

 $2Np^2 + \frac{1528}{7} \frac{N}{s} p^4 + 27Ns.$

With $s \approx \sqrt{\frac{1528}{189}}p^2$, it is $156Np^2$. In Tang's algorithm, the total cost is

$$2Np^{2} + \frac{1528}{7} \frac{N}{s} * \frac{85}{4} p^{2} \log(4p) + 9Ns.$$

With $s \approx \frac{\sqrt{228480p^2 \log(4p)}}{21}$, it is

$$2Np^2 + 410\sqrt{\log(4p)}Np.$$

According to this result, the break even p is 5.

CSCAMM FAM04: 04/19/2004

© Duraiswami & Gumerov, 2003-2004

Cheng et al 1999

- H. Cheng,¤ L. Greengard,y and V. Rokhlin, A Fast Adaptive Multipole Algorithm in Three Dimensions, Journal of Computational Physics 155, 468–498 (1999)
- Convert to a transform representation ("plane-wave")
 - \Box at a cost of O(p² log p)
 - Expansion formula

$$\frac{1}{r} = \frac{1}{2\pi} \int_0^\infty e^{-\lambda(z-z_0)} \int_0^{2\pi} e^{i\lambda((x-x_0)\cos\alpha + (y-y_0)\sin\alpha)} d\alpha \, d\lambda.$$

• Discretize integrals

$$\left|\frac{1}{r} - \sum_{k=1}^{s(\varepsilon)} \frac{w_k}{M_k} \sum_{j=1}^{M_k} e^{-\lambda_k \cdot (z-z_0)} \cdot e^{i\lambda_k \cdot [(x-x_0) \cdot \cos(\alpha_{j,k} + (y-y_0) \cdot \sin(\alpha_{j,k})]}\right| < \varepsilon$$

- Trans
- Convert back

CSCAMM FAM04: 04/19/2004