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Review
• FMM aims at accelerating 

the matrix vector product
• Matrix entries determined by 

a set of source points and 
evaluation points (possibly
the same)

• Function Φ has following 
point-centered representations 
about a given point x*

Local (valid in a neighborhood of a 
given point)
Far-field or multipole (valid outside a neighborhood of a given point)
In many applications Φ is singular

• Representations are usually series 
Could be integral transform representations

• Representations are usually approximate 
Error bound guarantees the error is below a specified tolerance
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Review
• One representation, valid in a 

given domain, can be converted 
to another valid in a subdomain
contained in  the original domain

• Factorization trick is at 
core of the FMM speed up

• Representations we use are factored … separate points xi and yj

• Data is partitioned  to organize the source points and evaluation 
points so that for each point we can separate the points over which 
we can use the factorization trick, and those we cannot.

• Hierarchical partitioning allows use of different factorizations for 
different groups of points

• Accomplished via MLFMM
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Prepare Data Structures

• Convert data set into integers given some maximum 
number of bits allowed/dimensionality of space

• Interleave

• Sort

• Go through the list and check at what bit position two 
strings differ 

For a given s determine the number of levels of subdivision 
needed

s is the maximum number of points in a box at the finest level  
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Hierarchical Spatial Domains
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which do not 
belong to E2
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|y - x* - t|  >  r 1 =  r + |t|

Since 
Ωr1(x*+t) ⊂ Ωr(t) !
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Original expansion
Is valid only here!

Also
|xi - x* |  <  r

singular point !

S|S-reexpansion (Far to Far, or Multipole to 
Multipole, or M2M)
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UPWARD PASS
• Partition sources into a source hierarchy.
• Stop hierarchy so that boxes at the finest level contain at most s

sources
• Let the number of levels be L
• Consider the finest level
• For non-empty boxes we create S expansion about center of the 

box Φ(xi,y)=∑P uiB(x*,xi) S(x*,y)

• We need to keep these coefficients. C(n,l) for each level as we will 
need it in the downward pass

• Then use S/S translations to go up level by level up to level 2.
• Cannot go to level 1 (Why?)
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• S expansion is valid in the domain E_3 outside domain 
E_1 (provided d<9)
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UPWARD PASS
• At the end of the upward pass we have a set of S

expansions (i.e. we have coefficients for them)
• we have a set of coefficients C(n,l) for n=1,…,2ld l=L,…,2 

• Each of these expansions is about a center, and is valid 
in some domain

• We would like to use the coarsest expansions in the 
downward pass (have to deal with fewest numbers of 
coefficients)

• But may not be able to --- because of domain of validity
• Upward pass works on source points and builds 

representations to be used in the downward pass, where 
the actual product will be evaluated
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DOWNWARD PASS
• Starting from level 2, build an R expansion in boxes 

where R expansion is valid

• Must to do S|R translation 

• The S expansion is not valid in 
boxes immediately surrounding 
the current box 

• So we must exclude boxes in the 
E4 neighborhood

Ε 4Ε 4
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Ωr(x*)

|y - x* - t|  <  r 1 =  |t| - r 

Since 
Ωr1(x*+t) ⊂ Ωr(t) !

Original expansion
Is valid only here!

Also
|xi - x* |  <  r

singular point !
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S|R-reexpansion (Far to Local, or 
Multipole to Local, or M2L)
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Downward Pass. Step 1.

Level 2: Level 3:
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Downward Pass. Step 1.

THIS MIGHT BE
THE MOST EXPENSIVE
STEP OF THE ALGORITHM
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Downward Pass. Step 1.

Total number of S|R-translations
per 1 box in d-dimensional space

(far from the domain boundaries)

Exponential
Growth
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Domains of Expansion Validity (6).
S|R-translation.

x*1 x*2

yxi d < 4

< <

< <
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R|R-reexpansion (Local to Local, or 
L2L)

|y - x* - t|  <  r 1 =  r - |t|

Since Ωr1(x*+t) ⊂ Ωr(t) !

Original expansion
Is valid only here!
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Downward Pass Step 2
• Now consider we already have done the S|R translation at 

some level at the center of a box.

• So we have a R expansion that includes contribution of 
most of the points, but not of points in the E4 neighborhood

• We can go to a finer level to include these missed points

• But we will now have to translate the already built R 
expansion to a box center of a child

(Makes no sense to do S|R again, since many S|R are 
consolidated in this R expansion)

• Add to this translated one, the S|R of the E4 of the finer 
level
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• Formally
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Downward Pass. Step 2.
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Domains of Expansion Validity (5).
R|R and S|S-translations.
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Final Summation

• At this point we are at the finest level. 

• We cannot do any S|R translation for xi ‘s that are in the 
E_3 neighborhood of our yj’s

• Must evaluate these directly
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Final Summation

yj

Contribution of E2 Contribution of E3
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Cost of FMM --- Upward Pass

• Upward Step1. Cost of creating an S expansion for each 
source point. O(NP)

• Upward Step2. Cost of performing an S|S translation 
If we use expensive (matrix vector) method cost is O(P2) for one 
translation.

• Step 2 is repeated from level L-1 to level 2

• Total Cost of Upward Pass ∼ NP + (N/s) (P2)
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COST of MLFMM
• Cost of downward pass, step 1 is the cost of performing 

S|R translations at each level

• At the downward pass, 2nd step we have the cost of  the   
R|R translation, and S|R translation from the E4

neighbourhood (already accounted for above)

• Final summation cost is 

• Total
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Itemized Cost of MLFMM
Assume that all 
translation costs are 
the same,
CostTranslation(P)

Powers of E4

and E2 neighborhoods

Regular mesh:
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Optimization of the Grouping Parameter

s

CostMLFMM

sopt
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Optimization of the Grouping Parameter
(Example)

In this example optimization results in about 10 times savings!
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DEMO

• Yang Wang (wpwy@umiacs.umd.edu),
“Java Implementation and Simulation of the Fast 
Multipole Method for 2-D Coulombic Potential 
Problems,” AMSC 698R course project report, 2003.

• http://brigade.umiacs.umd.edu/~wpwy/applet/FmmApplet.html

• Seems to work with Mozilla and Netscape …IE has problems
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Some Numerical Experiments with 
MLFMM

N.A. Gumerov, R. Duraiswami & E.A. Borovikov

Data Structures, Optimal Choice of Parameters, and
Complexity Results for Generalized Multilevel Fast Multipole
Methods in d Dimensions.

UMIACS TR 2003-28,
Also issued as Computer Science Technical Report CS-TR-# 4458.
University of Maryland, College Park, 2003.

Available online via 
http://www.umiacs.umd.edu/~ramani/pubs/umiacs-tr-2003-28.pdf
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Error Test. FMM vs Middleman.
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Test with Varying Grouping Parameter. 
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Test with Varying N. 
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Comparisons for different dimensionalities
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Random Distributions
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Dependence of CPU Time on the Grouping 
Parameter, s 
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Dependence of CPU Time on the Maximum 
Space Subdivision Level 
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Dependence of CPU Time on M
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Adaptive FMM

• H. Cheng, L. Greengard,  and V. Rokhlin, “A Fast 
Adaptive Multipole Algorithms in Three Dimensions,”  
Journal of Computational Physics, 155:468-498, 1999 .

• N.A. Gumerov, R. Duraiswami, and Y.A. Borovikov, 
“Data structures and algorithms for adaptive multilevel 
fast multipole methods,” in preparation. 


