# The Multilevel Fast Multipole Method 

Ramani Duraiswami

## Nail Gumerov

## Review

$$
\mathbf{v}=\boldsymbol{\Phi} \mathbf{u},
$$

- FMM aims at accelerating the matrix vector product
- Matrix entries determined by a set of source points and evaluation points (possibly the same)

$$
\boldsymbol{\Phi}=\left(\begin{array}{cccc}
\Phi\left(\mathbf{y}_{1}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{N}\right) \\
\Phi\left(\mathbf{y}_{2}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{M I}\right) \\
\ldots & \ldots & \ldots & \ldots \\
\Phi\left(\mathbf{y}_{M,}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{N}\right)
\end{array}\right) .
$$

- Function $\Phi$ has following point-centered representations $\mathrm{X}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\}, \quad \mathbf{x}_{i} \in \mathrm{R}^{d}, \quad i=1, \ldots, N$, $\mathrm{Y}=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{M}\right\}, \quad \mathbf{y}_{j} \in \mathrm{R}^{d}, \quad j=1, \ldots, M$. about a given point $\mathrm{X}_{*}$
Local (valid in a neighborhood of a given point)

$$
\boldsymbol{v}_{j}=\sum_{i=1}^{N} u_{i} \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right), \quad j=1, \ldots, M .
$$

Far-field or multipole (valid outside a neighborhood of a given point)
In many applications $\Phi$ is singular

- Representations are usually series
$\square$ Could be integral transform representations
- Representations are usually approximate

Error bound guarantees the error is below a specified tolerance

## Review

$$
\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{m=0}^{p-1} A_{m}\left(\mathbf{x}_{\mathbf{i}}\right) F_{m}\left(\mathbf{y}_{j}\right)+\operatorname{Error}\left(p ; \mathbf{x}_{i}, \mathbf{y}_{j}\right)
$$

- One representation, valid in a given domain, can be converted to another valid in a subdomain contained in the original domain
- Factorization trick is at core of the FMM speed up

$$
=\sum_{m=0}^{p-1} B_{m} F_{m}\left(\mathrm{y}_{j}\right)+E \operatorname{Error} ;(p, M), j=1, \ldots, M .
$$

- Representations we use are factored ... separate points $x_{i}$ and $y_{j}$
- Data is partitioned to organize the source points and evaluation points so that for each point we can separate the points over which we can use the factorization trick, and those we cannot.
- Hierarchical partitioning allows use of different factorizations for different groups of points
- Accomplished via MLFMM


## Prepare Data Structures

- Convert data set into integers given some maximum number of bits allowed/dimensionality of space
- Interleave
- Sort
- Go through the list and check at what bit position two strings differ
DFor a given $s$ determine the number of levels of subdivision needed
s is the maximum number of points in a box at the finest level


## Hierarchical Spatial Domains

$E_{1}$ : box
$E_{2}$ : points in the box and in neighboring boxes
$E_{3}$ : points in boxes outside neighborhood
$E_{4}$ : points belonging to neighbors of parent box, but which do not belong to $E_{2}$

$E_{2}$


$E_{4}$


## S|S-reexpansion (Far to Far, or Multipole to Multipole, or M2M)



## UPWARD PASS

- Partition sources into a source hierarchy.
- Stop hierarchy so that boxes at the finest level contain at most $s$ sources
- Let the number of levels be $L$
- Consider the finest level
- For non-empty boxes we create $S$ expansion about center of the box $\Phi\left(x_{i}, y\right)=\sum^{P} u_{i} B\left(x_{*}, x_{i}\right) S\left(x_{*}, y\right)$

$$
\begin{aligned}
\Phi_{1}^{(n, L)}(\mathbf{y}) & =\mathbf{C}^{(n, L)} \circ \mathbf{S}\left(\mathbf{y}-\mathbf{x}_{c}^{(n, L)}\right), \\
\mathbf{C}^{(n, L)} & =\sum_{\mathbf{x}_{i} \in E_{1}(n, L)} u_{i} \mathbf{B}\left(\mathbf{x}_{i}, \mathbf{x}_{c}^{(n, L)}\right) .
\end{aligned}
$$

- We need to keep these coefficients. $\boldsymbol{C}^{(n, l)}$ for each level as we will need it in the downward pass
- Then use S/S translations to go up level by level up to level 2.
- Cannot go to level 1 (Why?)
- $S$ expansion is valid in the domain $E \_3$ outside domain E_1 (provided $d<9$ )
$\boldsymbol{F}_{3}$




## UPWARD PASS

- At the end of the upward pass we have a set of $S$ expansions (i.e. we have coefficients for them)
- we have a set of coefficients $\boldsymbol{C}^{(n, l)}$ for $n=1, \ldots, 2^{l d} \quad l=L, \ldots, 2$
- Each of these expansions is about a center, and is valid in some domain
- We would like to use the coarsest expansions in the downward pass (have to deal with fewest numbers of coefficients)
- But may not be able to --- because of domain of validity
- Upward pass works on source points and builds representations to be used in the downward pass, where the actual product will be evaluated

CSCAMM FAM04: 04/19/2004

## DOWNWARD PASS

- Starting from level 2, build an $R$ expansion in boxes where $R$ expansion is valid

$$
\begin{aligned}
\Phi_{4}^{(n, l)}(\mathbf{y}) & =\widetilde{\mathbf{D}}^{(n, l)} \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{c}^{(n, l)}\right), \\
\widetilde{\mathbf{D}}^{(n, l)} & =\sum_{m \in I_{4}(n, l)}(\mathbf{S} \mid \mathbf{R})\left(\mathbf{x}_{c}^{(n, l)}-\mathbf{x}_{c}^{(m, l)}\right) \mathbf{C}^{(m, l)} .
\end{aligned}
$$

- Must to do $S \mid R$ translation
- The $S$ expansion is not valid in boxes immediately surrounding the current box


## $E_{4}$

- So we must exclude boxes in the $\mathrm{E}_{4}$ neighborhood



## S|R-reexpansion (Far to Local, or Multipole to Local, or M2L)



Original expansion
Is valid only here!

$$
\left|\mathbf{y}-\mathbf{x}_{*}-\mathbf{t}\right|<r_{1}=|\mathbf{t}|-r
$$

Since
$\Omega_{r 1}\left(\mathbf{x}_{*}+\mathbf{t}\right) \subset \Omega_{r}(\mathbf{t})!$
Also

$$
\left|\mathbf{x}_{i}-\mathbf{x}_{*}\right|<r
$$

singular point!

## Downward Pass. Step 1.

Level 2:


Level 3:

© Duraiswami \& Gumerov, 2003-2004

## Downward Pass. Step 1.

## THIS MIGHT BE

THE MOST EXPENSIVE
STEP OF THE ALGORITHM


## Downward Pass. Step 1.

$$
P_{4}=\text { PowerOfE } E_{4} \text { Neighborhood }=3^{d} 2^{d}-3^{d}=3^{d}\left(2^{d}-1\right)
$$



$$
\begin{aligned}
d=1: & P_{4}=3, \\
d=2: & P_{4}=27, \\
d=3: & P_{4}=189, \\
d=4: & P_{4}=1215, \\
& \ldots
\end{aligned}
$$

Total number of $\mathrm{S} \mid \mathrm{R}$-translations per 1 box in $d$-dimensional space
(far from the domain boundaries)

## Domains of Expansion Validity (6). S|R-translation.

$S$-expansion coefficients can be $S \mid R$-translated (converted to $R$-expansion coefficients)

$$
\begin{aligned}
\left|\mathbf{y}-\mathbf{x}_{* 2}\right| & <\left|\mathbf{x}_{* 1}-\mathbf{x}_{* 2}\right|-\left|\mathbf{x}_{i}-\mathbf{x}_{* 1}\right| \\
\mathbf{A}\left(\mathbf{x}_{i}, \mathbf{x}_{* 2}\right) & =(\mathbf{S} \mid \mathbf{R})\left(\mathbf{x}_{* 2}-\mathbf{x}_{* 1}\right) \mathbf{B}\left(\mathbf{x}_{i}, \mathbf{x}_{* 1}\right)
\end{aligned}
$$



$$
\begin{aligned}
&\left|\mathbf{y}-\mathbf{x}_{*}\right|<r_{\min }(l), \quad\left|\mathbf{x}_{i}-\mathbf{x}_{*}\right|<r_{\min }(l), \\
& \min \left|\mathbf{x}_{* 1}-\mathbf{x}_{* 2}\right|=2 \operatorname{size}(l) . \\
& 2^{-l-1} \sqrt{d}+2^{-l-1} \sqrt{d}<2^{-l+1}, \quad d<4 \\
& d<4
\end{aligned}
$$

## $\mathrm{R} \mid \mathrm{R}$-reexpansion (Local to Local, or L2L)



## Downward Pass Step 2

- Now consider we already have done the $\mathrm{S} \mid \mathrm{R}$ translation at some level at the center of a box.
- So we have a R expansion that includes contribution of most of the points, but not of points in the $\mathrm{E}_{4}$ neighborhood
- We can go to a finer level to include these missed points
- But we will now have to translate the already built R expansion to a box center of a child
(Makes no sense to do $S \mid R$ again, since many $S \mid R$ are consolidated in this R expansion)
- Add to this translated one, the $\mathrm{S} \mid \mathrm{R}$ of the $\mathrm{E}_{4}$ of the finer level

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

- Formally

Step 2. At $l=2$ we have

$$
\Phi_{3}^{(n, 2)}(\mathbf{y})=\Phi_{4}^{(n, 2)}(\mathbf{y}), \quad \mathrm{D}^{(n, 2)}=\widehat{\mathrm{D}}^{(n, 2)}
$$

Form $\Phi_{3}^{(n, l)}(\mathbf{y})$ (or expansion coefficients of this function) by adding $\Phi_{4}^{(\text {Parent }(n), l-1)}(\mathbf{y})$ to $(\mathbf{R} \mid \mathbf{R})$ - translated coefficients of the parent box to the child center:

$$
\begin{aligned}
\Phi_{3}^{(n, l)}(\mathbf{y}) & =\mathbf{D}^{(n, l)} \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{c}^{(n, l)}\right), \\
\mathbf{D}^{(n, l)} & =\widehat{\mathbf{D}}^{(n, l)}+(\mathbf{R} \mid \mathbf{R})\left(\mathbf{x}_{c}^{(n, l)}-\mathbf{x}_{c}^{(m, l-1)}\right) \mathbf{D}^{(m, l-1)}, \quad m=\operatorname{Parent}(n) .
\end{aligned}
$$

$$
\Phi_{4}^{(n, l)}(\mathbf{y})=\widetilde{\mathrm{D}}^{(n, l)} \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{c}^{(n, l)}\right)
$$

$$
\widetilde{\mathbf{D}}^{(n, l)}=\sum_{m \in I_{4}(n, l)}(\mathbf{S} \mid \mathbf{R})\left(\mathbf{x}_{c}^{(n, l)}-\mathbf{x}_{c}^{(m, l)}\right) \mathbf{C}^{(m, l)} .
$$

## Downward Pass. Step 2.



Figure shows that local-to-local translation is applicable in this case (smaller sphere is located completely inside the larger sphere), and junction of structures $E_{3}(n, l)$ and $E_{4}(n, l+1)$ produces $E_{3}(n, l+1)$ :

$$
E_{3}(n, l+1)=E_{3}(n, l) \cup E_{4}(n, l+1) .
$$

CSCAMM FAM04: 04/19/2004

## Domains of Expansion Validity (5). $\mathrm{R} \mid \mathrm{R}$ and $\mathrm{S} \mid \mathrm{S}$-translations.

$R$-expansion coefficients can be $R \mid R$-translated:

$$
\begin{aligned}
\left|\mathbf{y}-\mathbf{x}_{* 2}\right| & <\left|\mathbf{x}_{i}-\mathbf{x}_{* 1}\right|-\left|\mathbf{x}_{* 1}-\mathbf{x}_{* 2}\right|: \\
\mathbf{A}\left(\mathbf{x}_{i}, \mathbf{x}_{* 2}\right) & =(\mathbf{R} \mid \mathbf{R})\left(\mathbf{x}_{* 2}-\mathbf{x}_{* 1}\right) \mathbf{A}\left(\mathbf{x}_{i}, \mathbf{x}_{* 1}\right)
\end{aligned}
$$

Not as
restrictive as
$S \mid R$

$$
\left|\mathbf{y}-\mathbf{x}_{* 2}\right|>\left|\mathbf{x}_{* 1}-\mathbf{x}_{* 2}\right|+\left|\mathbf{x}_{i}-\mathbf{x}_{* 1}\right|
$$

$$
\mathbf{B}\left(\mathbf{x}_{i}, \mathbf{x}_{* 2}\right)=(\mathbf{S} \mid \mathbf{S})\left(\mathbf{x}_{* 2}-\mathbf{x}_{* 1}\right) \mathbf{B}\left(\mathbf{x}_{i}, \mathbf{x}_{* 1}\right)
$$





## Final Summation

- At this point we are at the finest level.
- We cannot do any $\mathrm{S} \mid \mathrm{R}$ translation for $\mathrm{x}_{\mathrm{i}}$ 's that are in the E_3 neighborhood of our $y_{j}$ 's
- Must evaluate these directly


## Final Summation

As soon as coefficients $\mathbf{D}^{(n, L)}$ are determined total potential can be computed for any point $\mathbf{y}_{j} \in E_{1}(0,0)$, where $\Phi_{2}^{(n, l)}(\mathbf{y})$ can be computed straightforward. So:


## Cost of FMM --- Upward Pass

- Upward Step1. Cost of creating an S expansion for each source point. O(NP)
- Upward Step2. Cost of performing an $\mathrm{S} \mid \mathrm{S}$ translation If we use expensive (matrix vector) method cost is $O\left(P^{2}\right)$ for one translation.
- Step 2 is repeated from level $L-1$ to level 2

$$
\begin{aligned}
\text { CostUpward }_{2} & =2^{d}\left(2^{(L-1) d}+2^{(L-2) d}+\ldots+2^{2 d}\right) \operatorname{CostSS}(P) \\
& <\frac{2^{d}}{2^{d}-1}\left(2^{L d}-1\right) \operatorname{CostSS}(P) \sim \frac{N}{S} \operatorname{CostSS}(P)
\end{aligned}
$$

- Total Cost of Upward Pass $\sim N P+(N / s)\left(P^{2}\right)$

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

## COST of MLFMM

- Cost of downward pass, step 1 is the cost of performing $\mathrm{S} \mid \mathrm{R}$ translations at each level
$\operatorname{CostDownvard}_{1} \lesssim P_{4}(d)\left(2^{2 d}+\ldots+2^{L d}\right) \operatorname{CostSR}(P) \sim P_{4}(d) \frac{N}{S} \operatorname{CostSR}(P)$,
- At the downward pass, $2^{\text {nd }}$ step we have the cost of the $R \mid R$ translation, and $S \mid R$ translation from the $E_{4}$ neighbourhood (already accounted for above)
$\operatorname{CostDownward}_{2}=2^{d}\left(2^{2 d}+\ldots+2^{(L-1) d}\right) \operatorname{CostRR}(P) \sim \frac{N}{s} \operatorname{CostRR}(P)$,
- Final summation cost is CostEvahation $=M\left(P_{2}(d) s \operatorname{CostFunc}+P\right)$.
- Total

CSCAMM CostMLFMM $=(M+N) P+\left(P_{4}(d)+2\right) \frac{N}{s}$ CostTranslation $(P)+P_{2}(d)$ sMCostFunc

## Itemized Cost of MLFMM

Regular mesh:
$\begin{aligned} & N=2^{L_{*} d}, \quad s=2^{L_{s} d}, \quad L=L_{\max }=L_{*}-L_{s} . \\ & \text { CostUpward } d_{1}= N \operatorname{CostExpansion}(P)=O(N P) .\end{aligned}$
Assume that all translation costs are the same, CostTranslation( $P$ )
CostUpward ${ }_{2}=2^{d}\left(2^{(L-1) d}+2^{(L-2) d}+\ldots+2^{2 d}\right) \operatorname{CostSS}(P)$

$$
<\frac{2^{d}}{2^{d}-1}\left(2^{L d}-1\right) \operatorname{CostSS}(P) \sim \frac{N}{s} \operatorname{CostSS}(P)
$$

$\operatorname{CostDownward} 1 \leq P_{4}(d)\left(2^{2 d}+\ldots+2^{L d}\right) \operatorname{CostSR}(P) \sim P_{4}(d) \frac{N}{s} \operatorname{CostSR}(P)$, $\operatorname{CostDownward} d_{2}=2^{d}\left(2^{2 d}+\ldots+2^{(L-1) d}\right) \operatorname{CostRR}(P) \sim \frac{N}{s} \operatorname{CostRR}(P)$, CostEvaluation $=M\left(P_{2}(d)\right.$ SCostFunc $\left.+P\right)$ Powers of $\mathrm{E}_{4}$ and $E_{2}$ neighborhoods
CostMLFFMM $=(M+N) P+\left(P_{4}(d)+2\right) \frac{N}{s}$ CostTranslation $(P)+P_{2}(d)$ sMCostFunc
CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

## Optimization of the Grouping Parameter



CostMLFMM $=(M+N) P+\left(P_{4}(d)+2\right) \frac{N}{s}$ CostTranslation $(P)+P_{2}(d)$ sMCostFunc

$$
\begin{aligned}
\frac{\partial \operatorname{CostMLFMM}}{\partial s} & =-\left(P_{4}(d)+2\right) \frac{N}{s^{2}} \text { CostTranslation }(P)+P_{2}(d) \text { MCostFunc }=0 \\
s_{\text {opt }} & =\left[\frac{N\left(P_{4}(d)+2\right) \text { CostTranslation }(P)}{M P_{2}(d) \text { CostFunc }}\right]^{1 / 2}
\end{aligned}
$$

CostMLFMM $M_{\text {opt }}=(M+N) P+2\left[M N\left(P_{4}(d)+2\right) P_{2}(d) \text { CostTranslation }(P) \text { CostFunc }\right]^{1 / 2}$.

## Optimization of the Grouping Parameter (Example)

$$
\begin{aligned}
s_{\text {opt }} & =\left[\frac{N\left(P_{4}(d)+2\right) \text { CostTranslation }(P)}{M P_{2}(d) \text { CostFunc }}\right]^{1 / 2} . \\
\text { CostMLFMM }_{\text {opt }} & =(M+N) P+2\left[M N\left(P_{4}(d)+2\right) P_{2}(d) \text { CostTranslation }(P) \text { CostFunc }\right]^{1 / 2} .
\end{aligned}
$$

Example:

$$
N=M, \quad P_{4}(d)=3^{d}\left(2^{d}-1\right), \quad P_{2}(d)=3^{d}
$$

CostTranslation $(P)=P^{2}, \quad$ CostFunc $=1$

$$
s_{o p t} \sim 2^{d / 2} P ; \quad \text { CostMLFMM} M_{o p t} \sim 2 N P\left(1+3^{d 2^{d / 2}}\right)
$$

For $d=2, \quad P=10, \quad s_{\text {opt }} \sim 38, \quad$ CostMLFMM $M_{o p t} \sim 38 N P=380 N$.
If non-optimized,

$$
s=1 ; \quad \text { CostMLFMM } M_{o p t} \sim N P\left(2+3^{d} 2^{d} P\right)
$$

For $d=2, \quad P=10, \quad s=1, \quad$ CostMLFMM $M_{o p t} \sim 360 N P=3600 N$.
In this example optimization results in about 10 times savings! CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

## DEMO

- Yang Wang (wpwy@umiacs.umd.edu), "Java Implementation and Simulation of the Fast Multipole Method for 2-D Coulombic Potential Problems," AMSC 698R course project report, 2003.
- http://brigade.umiacs.umd.edu/~wpwy/applet/FmmApplet.html
- Seems to work with Mozilla and Netscape ...IE has problems


## Some Numerical Experiments with MLFMM

N.A. Gumerov, R. Duraiswami \& E.A. Borovikov

Data Structures, Optimal Choice of Parameters, and Complexity Results for Generalized Multilevel Fast Multipole Methods in $d$ Dimensions.

UMIACS TR 2003-28,
Also issued as Computer Science Technical Report CS-TR-\# 4458.
University of Maryland, College Park, 2003.
Available online via
http://www.umiacs.umd.edu/~ramani/pubs/umiacs-tr-2003-28.pdf

## Error Test. FMM vs Middleman.

Regular Mesh, $N=M$.


## Test with Varying Grouping Parameter.



CSCAMM FAM04: 04/19/20044ber of Points in thermallaftBoxni \& Gumerov, 2003-2004

## Test with Varying N.



## Comparisons for different dimensionalities



CSCAMM FAM04: 04/19/2004

## Random Distributions

# Dependence of CPU Time on the Grouping Parameter, s 



## Dependence of CPU Time on the Maximum Space Subdivision Level



## Dependence of CPU Time on $M$



## Adaptive FMM

- H. Cheng, L. Greengard, and V. Rokhlin, "A Fast Adaptive Multipole Algorithms in Three Dimensions," Journal of Computational Physics, 155:468-498, 1999 .
- N.A. Gumerov, R. Duraiswami, and Y.A. Borovikov, "Data structures and algorithms for adaptive multilevel fast multipole methods," in preparation.

