Key Ideas of the FMM

Nail Gumerov \&
Ramani Duraiswami
UMIACS
[gumerov][ramani]@umiacs.umd.edu

Content

- Summation Problems
- Factorization (Middleman Method)
- Space Partitioning (Modified Middleman Method)
- Translations (Single Level FMM)
- Hierarchical Space Partitioning (Multilevel FMM)

Summation Problems

Matrix-Vector Multiplication

Compute matrix vector product

$$
\mathbf{v}=\Phi \mathbf{u}
$$

or

$$
v_{j}=\sum_{i=1}^{N} \Phi_{j i} u_{i}, \quad j=1, \ldots, M,
$$

where

$$
\Phi_{j i}=\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right), \quad j=1, \ldots, M, \quad i=1, \ldots, N,
$$

or

$$
\Phi=\left(\begin{array}{cccc}
\Phi_{11} & \Phi_{12} & \ldots & \Phi_{1 N} \\
\Phi_{21} & \Phi_{22} & \ldots & \Phi_{2 N} \\
\ldots & \ldots & \ldots & \ldots \\
\Phi_{M 1} & \Phi_{M 2} & \ldots & \Phi_{M N}
\end{array}\right)=\left(\begin{array}{cccc}
\Phi\left(\mathbf{y}_{1}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{N}\right) \\
\Phi\left(\mathbf{y}_{2}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{N}\right) \\
\ldots & \ldots & \ldots & \ldots \\
\Phi\left(\mathbf{y}_{M}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{N}\right)
\end{array}\right)
$$

Generally we have two sets of points in d-dimensions:
Sources: $\mathbb{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}, \quad \mathbf{x}_{i} \in \mathbb{R}^{d}, \quad i=1, \ldots, N$,
Receivers: $\mathbb{Y}=\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{M}\right\}, \quad \mathbf{y}_{j} \in \mathbb{R}^{d}, \quad j=1, \ldots, M$,
The receivers also can be called "targets" or "evaluation points".

Why \mathbf{R}^{d} ?

- $d=1$

Scalar functions, interpolation, etc.

- $d=2,3$
\square Physical problems in 2 and 3 dimensional space
- $d=4$
\square 3D Space + time, 3D grayscale images
- $d=5$
\square Color 2D images, Motion of 3D grayscale images
- $d=6$

Color 3D images

- $d=7$
\square Motion of 3D color images
- d = arbitrary
\square d-parametric spaces, statistics, database search procedures

CSCAMM FAM04: 04/19/2004

Fields (Potentials)

Field (Potential) of a single
(ith) unit source

Field (Potential) of the set
of sources of intensities $\left\{u_{i}\right\}$

Fields are continuous!
(Almost everywhere)

Examples of Fields

- There can be vector or scalar fields (we focus mostly on scalar fields)
- Fields can be regular or singular

Scalar Fields:

-

Gravity
(singular at $\mathbf{y}=\mathbf{x}_{i}$)

$$
\Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\frac{1}{\left|\mathbf{y}-\mathbf{x}_{i}\right|}
$$

Monochromatic Wave (k is the wavenumber) (singular at $\mathbf{y}=\mathbf{x}_{i}$)

$$
\Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\frac{\exp \left\{i k\left|\mathbf{y}-\mathbf{x}_{i}\right|\right\}}{\left|\mathbf{y}-\mathbf{x}_{i}\right|}
$$

- Gaussian
(regular everywhere)

$$
\Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\exp \left\{-\left|\mathbf{y}-\mathbf{x}_{i}\right|^{2} / \sigma\right\}
$$

Vector Field:
3D Velocity field:
(singular at $\mathbf{y}=\mathbf{x}_{i}$)

$$
\begin{array}{|c}
\Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\nabla_{y} \frac{1}{\left|\mathbf{y}-\mathbf{x}_{i}\right|}=\mathbf{i}_{1} \frac{\partial}{\partial y_{1}} \frac{1}{\left|\mathbf{y}-\mathbf{x}_{i}\right|}+\mathbf{i}_{2} \frac{\partial}{\partial y_{2}} \frac{1}{\left|\mathbf{y}-\mathbf{x}_{i}\right|}+\mathbf{i}_{3} \frac{\partial}{\partial y_{3}} \frac{1}{\left|\mathbf{y}-\mathbf{x}_{i}\right|}, \\
\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3} .
\end{array}
$$

Straightforward Computational Complexity:

$O(M N) \quad$ Error: 0 ("machine" precision)

The Fast Multipole Methods look for computation of the same problem with complexity o $(M N)$ and error < prescribed error.

In the case when the error of the FMM does not exceed the machine precision error (for given number of bits) there is no difference between the "exact" and "approximate" solution.

Factorization "Middleman Method"

Global Factorization

$$
\begin{gathered}
\forall \mathbf{x}_{i}, \mathbf{y}_{j} \in \Omega \in \mathbb{R}^{d}: \quad \text { Expansion center Truncation number } \\
\mathrm{T}\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{m=0}^{\infty} a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)=\sum_{m=0}^{p-1} a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)+\operatorname{Error}\left(p, \mathbf{x}_{i}, \mathbf{y}_{j}\right) \\
\\
\text { Expansion coefficients }
\end{gathered}
$$

Factorization Trick

$$
\begin{aligned}
v_{j} & =\sum_{i=1}^{N} \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right) u_{i} \\
& =\sum_{i=1}^{N}\left[\sum_{m=0}^{p-1} a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)+\operatorname{Error}\left(p ; \mathbf{x}_{i}, \mathbf{y}_{j}\right)\right] u_{i} \\
& =\sum_{m=0}^{p-1} f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right) \sum_{i=1}^{N} a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) u_{i}+\sum_{i=1}^{N} \operatorname{Error}\left(p ; \mathbf{x}_{i}, \mathbf{y}_{j}\right) u_{i} \\
& =\sum_{m=0}^{p-1} c_{m} f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)+\operatorname{Error}(N, p),
\end{aligned}
$$

where

$$
c_{m}=\sum_{i=1}^{N} a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) u_{i} .
$$

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Reduction of Complexity

Straightforward (nested loops):

$$
\begin{aligned}
& \text { for } j=1, \ldots, M \\
& \quad v_{j}=0 ; \\
& \quad \text { for } i=1, \ldots, N \\
& \quad v_{j}=v_{j}+\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right) u_{i} ; \\
& \quad \text { end; } \\
& \text { end; }
\end{aligned}
$$

Complexity: $O(M N)$

Factroized:

$$
\begin{aligned}
& \text { for } m=0, \ldots, p-1 \\
& \quad c_{m}=0 ; \\
& \quad \text { for } i=1, \ldots, N \\
& \quad c_{m}=c_{m}+a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) u_{i} ; \\
& \text { end; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } j=1, \ldots, M \\
& \quad v_{j}=0 ; \\
& \quad \text { for } m=0, \ldots, p-1 \\
& \quad v_{j}=v_{j}+c_{m} f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right) ; \\
& \quad \text { end; } \\
& \text { end; }
\end{aligned}
$$

Middleman Scheme

Complexity: $O(p N+p M)$

Middleman

Set of coefficients $\left\{\mathrm{c}_{\mathrm{m}}\right\}$

Example Problem (1D Gauss Transform)

Compute

$$
v_{j}=\sum_{i=1}^{N} \Phi\left(y_{j}, x_{i}\right) u_{i}, \quad j=1, \ldots, M, \quad \Phi\left(y, x_{i}\right)=e^{-\left(\vartheta-x_{i}\right)^{2}}
$$

where x_{i}, y_{j}, and u_{i} are random numbers distributed on $[0,1]$.
Solution:
We have

$$
\begin{aligned}
\Phi\left(y, x_{i}\right) & =e^{-\left(y-x_{i}\right)^{2}}=e^{-\left[y-x_{*}-\left(x_{i}-x_{*}\right)\right]^{2}}=e^{-\left(y-x_{*}\right)^{2}} e^{-\left(x_{i}-x_{*}\right)^{2}} e^{2\left(x_{i}-x_{*}\right)\left(y-x_{*}\right)} \\
& =e^{-\left(y-x_{*}\right)^{2}} e^{-\left(x_{i}-x_{*}\right)^{2}}\left[\sum_{m=0}^{p-1} \frac{2^{m}\left(x_{i}-x_{*}\right)^{m}\left(y-x_{*}\right)^{m}}{m!}+\text { error }_{p}\right], \\
\mid \text { error }_{p} \mid & \leqslant \frac{\left|y-x_{*}\right|^{p}}{p!} \sup _{0 \leqslant y \leqslant 1}\left|\frac{\partial^{p} e^{2\left(x_{i}-x_{*}\right)\left(y-x_{*}\right)}}{\partial y^{p}}\right|=\frac{2^{p}\left|y-x_{*}\right|^{p}\left|x_{i}-x_{*}\right|^{p}}{p!} \sup _{0 \leqslant<1}^{2\left(x_{i}-x_{*}\right)\left(y-x_{*}\right) .} .
\end{aligned}
$$

Let us select $x_{*}=0.5$, then truncation number $p=10$ is sufficient for computations with $\epsilon=10^{-6}$ and $N \leqslant 10^{4}$. The formula for fast computations will be then

$$
\begin{aligned}
v_{j} & =e^{-\left(y_{j}-x_{*}\right)^{2}} \sum_{m=0}^{p-1} c_{m}\left(y_{j}-x_{*}\right)^{m}, \quad j=1, \ldots, M \\
c_{m} & =\frac{2^{m}}{m!} \sum_{i=1}^{N} e^{-\left(x_{i}-x_{*}\right)^{2}}\left(x_{i}-x_{*}\right)^{m} u_{i} .
\end{aligned}
$$

Example Problem

Complexity of the Middleman Method

$$
\begin{aligned}
\mid \text { error }_{p} \mid & \leqslant \sigma^{-p}, \\
\text { FMMerror }_{p} & \leqslant \sigma^{-p} N, \\
p & \sim \log \frac{N}{\epsilon}, \\
\text { ComplexityFMM } & =O(p N)=O\left(N \log \frac{N}{\epsilon}\right)
\end{aligned}
$$

Local (Regular) Expansion

Let

$$
\mathbf{x}_{*} \in \mathbb{R}^{d}
$$

Basis
Functions

We call expansion
local (regular) inside a sphere
if the series converges for $\forall \mathbf{y},\left|\mathrm{y}-\mathbf{x}_{\star}\right|<r_{*}$
$\left|\mathbf{y}-\mathbf{x}_{*}\right|<r_{*}$ Expansion
Coefficients

We also call this R-expansion, since basis functions R_{m} should be regular

CSCAMM FAM04: 04/19/2004

Local Expansion (Example)

Valid for any $\left|x_{i .}-x_{*}\right|>\left|y-x_{*}\right|$

$$
x, y \in \mathbb{R}^{1} .
$$

$$
\Phi\left(y, x_{i}\right)=\frac{1}{y-x_{i}} .
$$

Looking for factorization:

$$
\Phi\left(y, x_{i}\right)=\sum_{m=0}^{\infty} a_{m}\left(x_{i}-x_{\psi}\right) R_{m}\left(y-x_{\psi}\right) .
$$

We have

$$
\frac{1}{y-x_{i}}=\frac{1}{y-x_{*}-\left(x_{i}-x_{*}\right)}=-\frac{1}{\left(x_{i}-x_{*}\right)\left[1-\frac{y-x_{*}}{x_{i}-x_{*}}\right]}=-\frac{1}{\left(x_{i}-x_{*}\right)}\left[1-\frac{y-x_{*}}{x_{i}-x_{*}}\right]^{-1}
$$

Geometric progression:

$$
\begin{gathered}
(1-\alpha)^{-1}=1+\alpha+\alpha^{2}+\ldots=\sum_{m-0}^{\infty} \alpha^{m}, \quad|\alpha|<1 . \\
{\left[1-\frac{y-x_{*}}{x_{i}-x_{*}}\right]^{-1}=\sum_{m=0}^{\infty} \frac{\left(y-x_{*}\right)^{m}}{\left(x_{i}-x_{*}\right)^{m}}, \quad y-x_{*}\left|<\left|x_{i}-x_{*}\right| .\right.}
\end{gathered}
$$

Choose

$$
\begin{array}{|c|}
\hline a_{m}\left(x_{i}-x_{*}\right)=-\frac{1}{\left(x_{i}-x_{*}\right)^{m+1}}, \quad m=0,1, \ldots, \\
R_{m}\left(y-x_{*}\right)=\left(y-x_{*}\right)^{m}, \quad m=0,1, \ldots \\
\hline
\end{array}
$$

Example:

Let

We call expansion
local (regular) inside a sphere

if the series converges for $\forall \mathbf{y},\left|\mathrm{y}-\mathrm{x}_{\star}\right|<r_{*}$.
$\left|\mathbf{y}-\mathbf{x}_{*}\right|<r_{*}$ Expansion
Coefficients

We also call this R-expansion, since basis functions R_{m} should be regular

Far Field (Singular) Expansions

Let

$$
\Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\sum_{m=0}^{\infty} b_{m}\left(\mathbf{x}_{i}, \mathbf{x}_{*}\right) S_{m}\left(\mathbf{y}-\mathbf{x}_{*}\right)
$$

far field expansion (or S-expansion) outside a sphere

$$
\left|\mathbf{y}-\mathbf{x}_{*}\right|>R_{*}
$$

if the series converges for $\forall \mathbf{y},\left|\mathbf{y}-\mathbf{x}_{*}\right|>R_{*}$.

Example:

$$
\begin{gathered}
\Phi\left(y, x_{i}\right)=\frac{1}{y-x_{i}} . \\
\frac{1}{y-x_{i}}=\frac{1}{y-x_{*}-\left(x_{i}-x_{*}\right)}=\frac{1}{\left(y-x_{*}\right)\left[1-\frac{x_{i}-x_{*}}{y-x_{*}}\right]}=\frac{1}{\left(y-x_{*}\right)}\left[1-\frac{x_{i}-x_{*}}{y-x_{*}}\right]^{-1} . \\
{\left[1-\frac{x_{i}-x_{*}}{y-x_{*}}\right]^{-1}=\sum_{m=0}^{\infty} \frac{\left(x_{i}-x_{*}\right)^{m}}{\left(y-x_{*}\right)^{m}}, \quad\left|y-x_{*}\right|>\left|x_{i}-x_{*}\right|} \\
\Phi\left(y, x_{i}\right) \\
=\sum_{m=0}^{\infty} b_{m}\left(x_{i}, x_{*}\right) S_{m}\left(y-x_{*}\right) \\
b_{m}\left(x_{i}, x_{*}\right) \\
=\left(x_{i}-x_{*}\right)^{m}, \quad m=0,1, \ldots, \\
S_{m}\left(y-x_{*}\right)
\end{gathered}=\left(y-x_{*}\right)^{-m-1}, \quad m=0,1, \ldots .
$$

Middleman for Well Separated Domains:

Problem with "Outliers", or "Bad" Points

Example from Room Acoustics

"Bad" Points

Room
(a set of targets)

Comparison of Straightforward and Fast Solutions

Natural Spatial Grouping for Well Separated Sets (Grouping with Respect to the Target Set)

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Natural Spatial Grouping for Well Separated Sets (continuation)

Groups

Natural Spatial Grouping for Well Separated Sets
 (Grouping with respect to the Source Set)
 Group 2

Natural Spatial Grouping for Well Separated Sets (continuation)

Groups

Examples of Natural Spatial Grouping

- Stars (Form Galaxies, Gravity);
- Flow Past a Body (Vortices are Grouped in a Wake);
- Statictics (Clusters of Statictical Data Points);
- People (Organized in Groups, Cities, etc.);
- Create your own example !

Space Partitioning "Modified Middleman"

Deficiencies of "Natural Grouping"

- Data points may be not naturally grouped;
- Need intelligence to identify the groups: Problem with the algorithms (Artificial Intelligence?)
- Problem dependent.

The Answer Is: Space Partitioning

Space Partitioning with Respect to the Target Set

Target Box

Neighbor
Box

A Modified Middleman Algorithm

Decomposition of the sum:
Singular Part (sources in the neighborhood)

$$
v\left(\mathbf{y}_{j}\right)=\sum_{\mathbf{x}_{i} \in R_{n}^{+}} u_{i} \Phi\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right)+\sum_{\mathbf{x}_{i} \in R_{n}} u_{i} \Phi\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right), \quad \mathbf{y}_{j} \in R_{n} .
$$

Regular Part (sources outside the neighborhood)

- Factorization of the regular part

$$
\Phi\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right)=\sum_{m=0}^{p-1} a_{m}\left(\mathbf{x}_{i}, \mathbf{x}_{n *}\right) R_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{n *}\right)+\text { Error }_{p}, \quad \mathbf{y}_{j}, \mathbf{x}_{n *} \in R_{n}, \quad \mathbf{x}_{i} \in R_{n}^{-} .
$$

-

Fast computation of the regular part

$$
\sum_{\mathbf{x}_{i} \in R_{n}} u_{i} \Phi\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right)=\sum_{m=0}^{p-1}\left[\sum_{\mathbf{x}_{i} \in R_{n}^{n}} u_{i} a_{m}\left(\mathbf{x}_{i}, \mathbf{x}_{n *}\right)\right] R_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{n *}\right) .
$$

Direct summation of the singular part, $\sum_{\mathbf{x}_{i} \in R_{n}^{+}} u_{i} \Phi\left(\mathbf{y}_{j}-\mathbf{x}_{i}\right)$

A Scheme of "Modified Middleman"

Modified Middleman

A scheme with
local expansions

A scheme with far field expansions

Asymptotic Complexity of the "Modified Middleman Method"

Let N be the number of sources, M the number of targets, and K the number of target boxes. contains

!Each target box, R_{n}, M_{n} targets, $n=1, \ldots, K$.
The neighborhood of each target box contains N_{n} sources, $n=1, \ldots, K$. Computation of the expansion coefficients for the regular part for the nth box requires $O\left(\left(N-N_{n}\right) p\right)$ operations.

Evaluation of the regular expansion for the nth box requires $O\left(M_{n} p\right)$ operations.
Direct computation of the singular part requires $O\left(M_{n} N_{n}\right)$ operations.

- Total complexity is:

$$
\text { Complexity }=O\left(\sum_{n=1}^{K}\left[\left(N-N_{n}\right) p+M_{n} p+M_{n} N_{n}\right]\right)
$$

Asymptotic Complexity of the Modified Middleman (continued)

We have

$$
\sum_{n=1}^{K} M_{n}=M
$$

Power of the neighborhood of dimensionality d

Consider a uniform distribution, then

$$
\begin{gathered}
N_{n} \sim \text { const } \sim \frac{N P o w(d)}{K}, \\
F(K)=\sum_{n=1}^{K}\left[\left(N-N_{n}\right) p+M_{n} p+M_{n} N_{n}\right]=K N p-N p P o w(d)+M p+\frac{M N P o w(d)}{K} \\
=\frac{M N}{K} \operatorname{Pow}(d)+(K-\operatorname{Pow}(d)) N p+M p \\
\text { Complexity }=O(F(K))
\end{gathered}
$$

Optimization of the box number

Optimum complexity

$$
\begin{aligned}
& F(K)=\frac{M N}{K} P o w(d)+(K-\operatorname{Pow}(d)) N p+M p \\
& K_{o p t}=\left[\frac{M N P o w(d)}{N p}\right]^{1 / 2}=\sqrt{\frac{M P o w(d)}{p}}
\end{aligned}
$$

$$
\text { Complexity }=O\left(F\left(K_{o p t}\right)\right)=O\left(N p\left(2 \sqrt{\frac{M P O w(d)}{p}}-\operatorname{Pow}(d)\right)+M p\right)
$$

For $M \sim N, p \ll N:$

$$
\text { Complexity }=O\left(N^{3 / 2} p^{1 / 2}\right)
$$

Translations Single Level FMM

Translations (Reexpansions)

Let $\left\{F_{m}\left(\mathbf{y}-\mathbf{x}_{* 1}\right)\right\}$ and $\left\{G_{m}\left(\mathbf{y}-\mathbf{x}_{* 2}\right)\right\}$ be two sets of basis functions centered at $\mathbf{x}_{* 1}$ and $\mathbf{x}_{* 2}$, such that $\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)$ can be represented by two absolutely and uniformly convergent series in domains Ω_{1} and $\Omega_{2} \subset \Omega_{1}$:

$$
\begin{aligned}
& \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{n=0}^{\infty} a_{n}\left(\mathbf{x}_{i}-\mathbf{x}_{* 1}\right) F_{n}\left(\mathbf{y}_{j}-\mathbf{x}_{* 1}\right), \quad \mathbf{y}_{j} \in \Omega_{1} \\
& \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{m=0}^{\infty} b_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{* 2}\right) G_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{* 2}\right), \quad \mathbf{y}_{j} \in \Omega_{2} \subset \Omega_{1} .
\end{aligned}
$$

Under "translation" or "reexpansion" we mean an operator which relates the two sets of expansion coefficients:

$$
\left\{b_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{* 2}\right)\right\}=(F \mid G)(\mathbf{t})\left\{a_{n}\left(\mathbf{x}_{i}-\mathbf{x}_{* 1}\right)\right\}, \quad \mathbf{t}=\mathbf{x}_{* 2}-\mathbf{x}_{* 1} .
$$

$\mathrm{R} \mid \mathrm{R}$-reexpansion (Local to Local, or L2L)

$$
\text { Since } \Omega_{r 1}\left(\mathbf{x}_{*}+\mathbf{t}\right) \subset \Omega_{r}(\mathbf{t})!
$$

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

S|S-reexpansion (Far to Far, or Multipole to Multipole, or M2M)

S|R-reexpansion (Far to Local, or Multipole to Local, or M2L)

Original expansion Is valid only here!

$$
\left|\mathbf{y}-\mathbf{x}_{*}-\mathbf{t}\right|<r_{1}=|\mathbf{t}|-r
$$

Since
$\Omega_{r 1}\left(\mathbf{x}_{*}+\mathbf{t}\right) \subset \Omega_{r}(\mathbf{t})!$
Also

$\xrightarrow[\text { singular point! }]$$$
\left|\mathbf{x}_{i}-\mathbf{x}_{*}\right|<r
$$$$

Spatial Domains

Potentials due to sources in these spatial domains

Boxes with these numbers belong to these spatial domains CSCAMM FAM04: 04/19/2004

Definition of Potentials

$$
\begin{aligned}
& \Phi_{1}^{(n)}(\mathbf{y})=\sum_{\mathbf{x}_{i} \in E_{1}(n)} u_{i} \Phi\left(\mathbf{y}, \mathbf{x}_{i}\right), \\
& \Phi_{2}^{(n)}(\mathbf{y})=\sum_{\mathbf{x}_{i} \in E_{2}(n)} u_{i} \Phi\left(\mathbf{y}, \mathbf{x}_{i}\right), \\
& \Phi_{3}^{(n)}(\mathbf{y})=\sum_{\mathbf{x}_{i} \in E_{3}(n)} u_{i} \Phi\left(\mathbf{y}, \mathbf{x}_{i}\right),
\end{aligned}
$$

Since domains $E_{2}(n)$ and $E_{3}(n)$ are complimentary:

$$
\Phi(\mathbf{y})=\sum_{i=1}^{N} u_{i} \Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\sum_{\mathbf{x}_{i} \in E_{2}(n) \cup E_{3}(n)} u_{i} \Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\Phi_{2}^{(n)}(\mathbf{y})+\Phi_{3}^{(n)}(\mathbf{y})
$$

for arbitrary n.

Step 1. Generate S-expansion coefficients for each box

$$
\begin{aligned}
\Phi_{1}^{(n)}(\mathbf{x}) & =\mathbf{C}^{(n)} \circ \mathbf{S}\left(\mathbf{x}-\mathbf{x}_{c}^{(n)}\right), \\
\mathbf{C}^{(n)} & =\sum_{\mathbf{x}_{i} \in E_{1}(n, L)} u_{i} \mathrm{~B}\left(\mathbf{x}_{i}, \mathbf{x}_{c}^{(n)}\right) .
\end{aligned}
$$

loop over all non-empty source boxes
For $n \in$ NonEmptySource
Get $\mathbf{x}_{c}{ }^{(n)}$, the center of the box;
$\mathbf{C}^{(n)}=\mathbf{0}$;
For $\mathbf{x}_{i} \in E_{1}(n)$
Get $\mathbf{B}\left(\mathbf{x}_{i}, \mathbf{x}_{c}{ }^{(n)}\right)$, the S-expansion coefficients near the center of the box;
$\mathbf{C}^{(n)}=\mathbf{C}^{(n)}+u_{i} \mathbf{B}\left(\mathbf{x}_{i}, \mathbf{x}_{c}{ }^{(n)}\right) ;$

End;
End;
CSCAMM FAM04: 04/19/2004

Implementation can be different!

Step 2. (S|R)-translate expansion coefficients

$$
\begin{aligned}
\Phi_{3}^{(n)}(\mathbf{y}) & =\mathbf{D}^{(n)} \circ \mathbf{R}\left(\mathbf{y}-\mathbf{x}_{c}^{(n)}\right), \\
\mathbf{D}^{(n)} & =\sum_{m \in I 3(n)}(\mathbf{S} \mid \mathbf{R})\left(\mathbf{x}_{c}^{(n)}-\mathbf{x}_{c}^{(n)}\right) \mathbf{C}^{(m)} .
\end{aligned}
$$

loop over all non-empty evaluation boxes
For $n \in$ NonEmptyEvaluation
Get $\mathbf{x}_{c}{ }^{(n)}$, the center of the box;
$\mathbf{D}^{(n)}=\mathbf{0}$;
loop over all non-empty source boxes
For $m \in I_{3}(n) \longleftarrow$ outside the neighborhood of the n-th box
Get $\mathbf{x}_{c}{ }^{(m)}$, the center of the box;

$$
\mathbf{D}^{(n)}=\mathbf{D}^{(n)}+(\mathbf{S} \mid \mathbf{R})\left(\mathbf{x}_{c}^{(n)}-\mathbf{x}_{c}^{(m)}\right) \mathbf{C}^{(m)} ;
$$

End;
End;

$\mathrm{S} \mid \mathrm{R}$-translation

Step 3. Final Summation

$$
v_{j}=\Phi\left(\mathbf{y}_{j}\right)=\sum_{\mathbf{x}_{i} \in E_{2}(n)} \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)+\mathbf{D}^{(n)} \circ \mathbf{R}\left(\mathbf{y}_{j}-\mathbf{x}_{c}^{(n)}\right), \quad \mathbf{y}_{j} \in E_{1}(n) .
$$

For $n \in$ NonEmptyEvaluation \qquad loop over all boxes containing evaluation points
Get $\mathbf{x}_{C}{ }^{(n)}$, the center of the box;
For $\mathbf{y}_{j} \in E_{1}(n) \longleftarrow$ loop over all evaluation points in the box $v_{j}=\mathbf{D}^{(n)} \circ \mathbf{R}\left(\mathbf{y}_{j}-\mathbf{x}_{c}^{(n)}\right) ;$
For $\mathbf{x}_{i} \in E_{2}(n)$ loop over all sources in the neighborhood of the n-th box

$$
v_{j}=v_{j}+\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right) ;
$$

End;
End;
End;

Asymptotic Complexity of SLFMM

- By somssahaie thatan easily find neighbors, and lists of points in each box.
- Translation is performed by straightforward $P \times P$ matrix-vector multiplication, where $P(p)$ is the total length of the translation vector. So the complexity of a single translation is $O\left(P^{2}\right)$.
- The source and evaluation points are distributed uniformly, and there are K boxes, with s source points in each box ($s=N / K$). We call s the grouping (or clustering) parameter.
- The number of neighbors for each box is $O(1)$.

Then Complexity is:

- For Step 1: $O(P N)$
- For Step 2: $O\left(P^{2} K^{2}\right)$
- For Step 3: $O(P M+M s)$
- Total:

$$
O\left(P N+P^{2} K^{2}+P M+M s\right)=
$$

$$
O\left(P N+P^{2} K^{2}+P M+M N / K\right)
$$

Selection of Optimal K (or s)

$$
\begin{gathered}
F(K)=P N+P^{2} K^{2}+P M+P M N / K \\
F^{\prime}(K)=2 P^{2} K-P M N / K^{2}=0 \\
K_{o p t}=\left(\frac{M N}{2 P}\right)^{1 / 3}=O\left(\left(\frac{M N}{P}\right)^{1 / 3}\right) . \\
s_{o p t}=\frac{N}{K_{o p t}}=\left(\frac{2 P N^{2}}{M}\right)^{1 / 3}=O\left(\frac{P N^{2}}{M}\right)^{1 / 3} .
\end{gathered}
$$

Complexity of Optimized SLFMM

$$
\begin{aligned}
F\left(K_{o p t}\right) & =P N+P^{2}\left(\frac{M N}{2 P}\right)^{2 / 3}+P M+P M N\left(\frac{M N}{2 P}\right)^{-1 / 3} \\
& =P(M+N)+(M N)^{2 / 3} O\left(P^{4 / 3}\right)
\end{aligned}
$$

At $K=K_{o p t}$, and $M=O(N)$, the complexity of SLFMM is:

$$
O\left(P N+P^{4 / 3} N^{4 / 3}\right)=O\left(P^{4 / 3} N^{4 / 3}\right)
$$

Example of SLFMM

Compute matrix-vector product

$$
v_{j}=\sum_{i=1}^{N} \Phi_{j i} u_{i}, \quad j=1, \ldots, M, \quad \Phi_{j i}=\frac{1}{y_{j}-x_{i}},
$$

where and x_{1}, \ldots, x_{N} are random points uniformly distributed on $[0,10], M=N-1$, and each y_{j} is located between the closest x_{i} 's on each side, $j=1, \ldots, N-1$.

Hierarchical Space Partitioning (Multilevel FMM)

Hierarchy in 2d-tree

CSCAMM FAM04: 04/19/2004

© Duraiswami \& Gumerov, 2003-2004

A Scheme of MLFMM

Complexity $=O(p M+p N)$
© Duraiswami \& Gumerov, 2003-2004

Example of Multi Level Structure (Post Offices)

	• People (sources, Level 5)	
Source	• Mail Box, Post Master (Level 4)	
Hierarchy	• Local Post Offices (Level 3)	
(Area)	• City Post Office (Level 2)	

The MLFMM will be considered in more details in separate lectures

