
© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

An Introduction to Fast Multipole
Methods

Ramani Duraiswami

Institute for Advanced Computer Studies

University of Maryland, College Park
http://www.umiacs.umd.edu/~ramani

Joint work with Nail A. Gumerov

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Fast Multipole Methods

• Computational simulation is becoming an accepted paradigm for
scientific discovery.

Many simulations involve several million variables

• Most large problems boil down to solution of linear system or
performing a matrix-vector product

• Regular product requires O(N2) time and O(N2) memory

• The FMM is a way to
accelerate the products of particular dense matrices with vectors

Do this using O(N) memory

• FMM achieves product in O(N) or O(N log N) time and memory

• Combined with iterative solution methods, can allow solution of
problems hitherto unsolvable

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Matrix vector product

s1 = m11 x1 + m12 x2 + … + m1d xd

s2 = m21 x1 + m22 x2 + … + m2d xd

…

sn = mn1 x1 + mn2 x2 + … + mnd xd

• d products and sums
per line

• N lines

• Total Nd products
and Nd sums to
calculate N entries

• Memory needed is
NM entries

• Matrix vector product is identical to a
sum

si = ∑j=1
d mij xj

• So algorithm for fast matrix vector
products is also a fast summation
algorithm

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Linear Systems

• Solve a system of equations

Mx=s
• M is a N × N matrix, x is a N vector, s is a N vector

• Direct solution (Gauss elimination, LU Decomposition,
SVD, …) all need O(N3) operations

• Iterative methods typically converge in k steps with each
step needing a matrix vector multiply O(N2)

if properly designed, k<< N

• A fast matrix vector multiplication algorithm requiring
O(N log N) operations will speed all these algorithms

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Is this important?
• Argument:

Moore’s law: Processor speed doubles every 18 months
If we wait long enough the computer will get fast enough and
let my inefficient algorithm tackle the problem

• Is this true?
Yes for algorithms with same asymptotic complexity
No!! For algorithms with different asymptotic complexity

• For a million variables, we would need about 16
generations of Moore’s law before a O(N2) algorithm is
comparable with a O(N) algorithm

• Similarly, clever problem formulation can also achieve
large savings.

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Memory complexity

• Sometimes we are not able to fit a problem in available
memory

Don’t care how long solution takes, just if we can solve it
• To store a N × N matrix we need N2 locations

1 GB RAM = 10243 =1,073,741,824 bytes

=> largest N is 32,768
• “Out of core” algorithms copy partial results to disk, and keep only

necessary part of the matrix in memory
Extremely slow

• FMM allows reduction of memory complexity as well
Elements of the matrix required for the product can be
generated as needed
Can solve much larger problems (e.g., 107 variables on a PC)

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

The need for fast algorithms
• Grand challenge problems in large numbers of variables
• Simulation of physical systems

Electromagnetics of complex systems
Stellar clusters
Protein folding
Acoustics
Turbulence

• Learning theory
Kernel methods
Support Vector Machines

• Graphics and Vision
Light scattering …

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

• General problems in these areas can be posed in terms of
millions (106) or billions (109) of variables

• Recall Avogadro’s number (6.022 141 99 × 1023

molecules/mole

• Job of modeling is to find symmetries and representations
that reduce the size of the problem

• Even after state of art modeling, problem size may be
large

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Dense and Sparse matrices

• Operation estimates are for dense matrices.
Majority of elements of the matrix are non-zero

• However in many applications matrices are sparse

• A sparse matrix (or vector, or array) is one in which most
of the elements are zero.

If storage space is more important than access speed, it may be
preferable to store a sparse matrix as a list of (index, value)
pairs.

For a given sparsity structure it may be possible to define a fast
matrix-vector product/linear system algorithm

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

• Can compute

In 5 operations instead of 25 operations

• Sparse matrices are not our concern here

a1 0 0 0 0

0 a2 0 0 0

0 0 a3 0 0

0 0 0 a4 0

0 0 0 0 a5

x1

x2

x3

x4

x5

=

a1x1

a2x2

a3x3

a4x4

a5x5

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Structured matrices

• Fast algorithms have been found for many dense matrices

• Typically the matrices have some “structure”

• Definition:
A dense matrix of order N × N is called structured if its entries

depend on only O(N) parameters.

• Most famous example – the fast Fourier transform

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Fourier Matrices

FFT presented by Cooley and Tukey in 1965, but invented several
times, including by Gauss (1809) and Danielson & Lanczos (1948)

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

FFT and IFFT

The FFT has revolutionized many applications by reducing
the complexity by a factor of almost n

Can relate many other matrices to the Fourier Matrix

The discrete Fourier transform of a vector x is

the product Fnx.

The inverse discrete Fourier transform of a

vector x is the product F∗nx.

Both products can be done efficiently using the

fast Fourier transform (FFT) and the inverse

fast Fourier transform (IFFT) inO(n logn) time.

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Circulant Matrices

Toeplitz Matrices

Hankel Matrices

Vandermonde Matrices

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Structured Matrices

• (usually) these matrices can be diagonalized by the
Fourier matrix

• Product of diagonal matrix and vector requires O(N)
operations

• So complexity is the cost of FFT (O (N log N)) + product
(O(N))

• Order notation
Only keep leading order term (asymptotically important)
So complexity of the above is O (N log N)

• Structured Matrix algorithms are “brittle”
FFT requires uniform sampling
Slight departure from uniformity breaks factorization

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

• Introduced by Rokhlin & Greengard in 1987

• Called one of the 10 most significant advances in computing of the
20th century

• Speeds up matrix-vector products (sums) of a particular type

• Above sum requires O(MN) operations.

• For a given precision ε the FMM achieves the evaluation in O(M+N)
operations.

• Edelman: “FMM is all about adding functions”
Talk on Tuesday, next week

Fast Multipole Methods (FMM)

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

• FFT and other algorithms work on structured matrices

• What about FMM ?

• Speeds up matrix-vector products (sums) of a particular type

• Above sum also depends on O(N) parameters {xi} , {yj}, φ
• FMM can be thought of as working on “loosely” structured matrices

Is the FMM a structured matrix algorithm?

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

• Can accelerate matrix vector products
Convert O(N2) to O(N log N)

• However, can also accelerate linear system solution
Convert O(N3) to O(kN log N)
For some iterative schemes can guarantee k ≤ N

In general, goal of research in iterative methods is to reduce
value of k

Well designed iterative methods can converge in very few steps

Active research area: design iterative methods for the FMM

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

A very simple algorithm
• Not FMM, but has some key ideas

• Consider
S(xi)=∑j=1

N αj (xi – yj)2 i=1, … ,M

• Naïve way to evaluate the sum will require MN operations

• Instead can write the sum as
S(xi)=(∑j=1

N αj)xi
2 + (∑j=1

N αjyj
2) -2xi(∑j=1

N αjyj)

Can evaluate each bracketed sum over j and evaluate an expression of the
type

S(xi)=β xi
2 + γ -2xiδ

Requires O(M+N) operations

• Key idea – use of analytical manipulation of series to achieve
faster summation

• May not always be possible to simply factorize matrix entries

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Approximate evaluation

• FMM introduces another key idea or “philosophy”
In scientific computing we almost never seek exact answers
At best, “exact” means to “machine precision”

• So instead of solving the problem we can solve a “nearby”
problem that gives “almost” the same answer

If this “nearby” problem is much easier to solve, and we can bound
the error analytically we are done.

• In the case of the FMM
Express functions in some appropriate functional space with a
given basis
Manipulate series to achieve approximate evaluation
Use analytical expression to bound the error

• FFT is exact … FMM can be arbitrarily accurate

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Approximation Algorithms

• Computer science approximation algorithms
Approximation algorithms are usually directed at reducing
complexity of exponential algorithms by performing
approximate computations

Here the goal is to reduce polynomial complexity to linear order

Connections between FMM and CS approximation algorithms
are not much explored

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Tree Codes

• Idea of approximately evaluating matrix vector products
preceded FMM

• Tree codes (Barnes and Hut, 1986)

• Divides domain into regions and use approximate
representations

• Key difference: lack error bounds, and automatic ways of
adjusting representations

• Perceived to be easier to program

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Complexity

• The most common complexities are
O(1) - not proportional to any variable number, i.e. a fixed/constant amount
of time

O(N) - proportional to the size of N (this includes a loop to N and loops to
constant multiples of N such as 0.5N, 2N, 2000N - no matter what that is, if
you double N you expect (on average) the program to take twice as long)

O(N^2) - proportional to N squared (you double N, you expect it to take
four times longer - usually two nested loops both dependent on N).

O(log N) - this is tricker to show - usually the result of binary splitting.

O(N log N) this is usually caused by doing log N splits but also doing N
amount of work at each "layer" of splitting.

Exponential O(aN) : grows faster than any power of N

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Some FMM algorithms

• Molecular and stellar dynamics
Computation of force fields and dynamics

• Interpolation with Radial Basis Functions

• Solution of acoustical scattering problems
Helmholtz Equation

• Electromagnetic Wave scattering
Maxwell’s equations

• Fluid Mechanics: Potential flow, vortex flow
Laplace/Poisson equations

• Fast nonuniform Fourier transform

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Integral Equation
• FMM is often used in integral equations

• What is an integral equation?

• Function k(x,y) is called the kernel

• Integral equations are typically solved by “quadrature”
Quadrature is the process of approximately evaluating an integral

• If we can write

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

FMM-able Matrices

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Factorization
Degenerate Kernel:

O(pN) operations:

O(pM) operations:

Total Complexity: O(p(N+M))

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

“Middleman” Algorithm

Sources
Sources

Evaluation
Points

Evaluation
Points

Standard algorithm Middleman algorithm

N M N M

Total number of operations: O(NM) Total number of operations: O(N+M)

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Factorization

Non-Degenerate Kernel:

Error Bound:

Middleman Algorithm
Applicability:

Truncation Number

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Factorization Problem:

•Usually there is no factorization available that
provides a uniform approximation of the kernel
in the entire computational domain.
•So we have to construct a patchwork-quilt of
overlapping approximations, and manage this.

•Need representations of functions that allow
this
•Need data structures for the management

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Five Key Stones of FMM

• Representation and Factorization
• Error Bounds and Truncation
• Translation
• Space Partitioning
• Data Structures

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Fast Multipole Methods

• Middleman (separation of variables)
No space partitioning

• Single Level Methods
Simple space partitioning (usually boxes)

• Multilevel FMM (MLFMM)
Multiple levels of space partitioning (usually hierarchical boxes)

• Adaptive MLFMM
Data dependent space partitioning

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Examples of Matrices

exp

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Iterative Methods

• To solve linear systems of equations;
• Simple iteration methods;
• Conjugate gradient or similar methods;
• We use Krylov subspace methods:

Parameters of the method;
Preconditioners;
Research is ongoing.

• Efficiency critically depends on efficiency of
the matrix-vector multiplication.

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Far and Near Field Expansions

xi

Ω

Ω

x*

R S

y

y

rc|xi - x*|

Rc|xi - x*|

xi

Ω

ΩΩ

x*

R S

y

y

rc|xi - x*|

Rc|xi - x*|

Far Field

Near Field

Far Field:

Near Field:

S: “Singular”
(also “Multipole”,

“Outer”
“Far Field”),

R: “Regular”
(also “Local”,

“Inner”
“Near Field”)

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Example of Multipole and Local
expansions (3D Laplace)

Spherical Harmonics:
x

y

z

O

x

y

z

O

x

y

z

O

θ

φ

r

r

Spherical Coordinates:

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Idea of a Single Level FMM

Sources Sources
Evaluation

Points

Evaluation
Points

Standard algorithm SLFMM

N M N M

Total number of operations: O(NM) Total number of operations: O(N+M+KL)

K groups

L groups

Needs Translation!

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Multipole-to-Local S|R-translation

Also “Far-to-Local”, “Outer-to-Inner”, “Multipole-to-Local”

xi

Ω1i

Ω1i

Ω2i

x*1

x*2

S

(S|R)

y

R

Rc|xi - x*1|

R2 = min{|x*2 - x*1|-Rc |xi - x*1|,rc|xi - x*2|}

R2

xi

Ω1i

Ω1iΩ1i

Ω2i

x*1

x*2

S

(S|R)

y

R

Rc|xi - x*1|

R2 = min{|x*2 - x*1|-Rc |xi - x*1|,rc|xi - x*2|}

R2

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

S|R-translation Operator

S|R-Translation Matrix

S|R-Translation Coefficients

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

S|R-translation Operators
for 3D Laplace and Helmholtz equations

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Idea of Multilevel FMM
Source Data Hierarchy Evaluation Data Hierarchy

N M

Level 2
Level 3

Level 4Level 5

Level 2
Level 3

Level 4 Level 5

S|S

S|R

R|R

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Complexity of Translation

• For 3D Laplace and Helmholtz series have p2 terms;

• Translation matrices have p4 elements;

• Translation performed by direct matrix-vector
multiplication has complexity O(p4);

• Can be reduced to O(p3);

• Can be reduced to O(p2log2 p);

• Can be reduced to O(p2) (?).

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Week 2: Representations

• Gregory Beylkin (University of Colorado) "Separated
Representations and Fast Adaptive Algorithms in Multiple
Dimensions"

• Alan Edelman (MIT) "Fast Multipole: It's All About Adding
Functions in Finite Precision"

• Vladimir Rokhlin (Yale University) "Fast Multipole Methods in
Oscillatory Environments: Overview and Current State of
Implementation"

• Ramani Duraiswami (University of Maryland) "An Improved
Fast Gauss Transform and Applications"

• Eric Michielssen (University of Illinois at Urbana-Champaign)
"Plane Wave Time Domain Accelerated Integral Equation
Solvers"

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Week 2: Data Structures

• David Mount (University of Maryland) "Data
Structures for Approximate Proximity and Range
Searching"

• Alexander Gray (Carnegie Mellon University) "New
Lightweight N-body Algorithms"

• Ramani Duraiswami (University of Maryland) "An
Improved Fast Gauss Transform and Applications"

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Week 2: Applications
• Nail Gumerov (University of Maryland) "Computation of 3D Scattering from Clusters

of Spheres using the Fast Multipole Method"
• Weng Chew (University of Illinois at Urbana-Champaign) "Review of Some Fast

Algorithms for Electromagnetic Scattering"
• Leslie Greengard (Courant Institute, NYU) "FMM Libraries for Computational

Electromagnetics"
• Qing Liu (Duke University) "NUFFT, Discontinuous Fast Fourier Transform, and

Some Applications"
• Eric Michielssen (University of Illinois at Urbana-Champaign) "Plane Wave Time

Domain Accelerated Integral Equation Solvers"
• Gregory Rodin (University of Texas, Austin) "Periodic Conduction Problems: Fast

Multipole Method and Convergence of Integral Equations and Lattice Sums"
• Stephen Wandzura (Hughes Research Laboratories) "Fast Methods for Fast

Computers"
• Toru Takahashi (Institue of Physical and Chemical Research (RIKEN), Japan) "Fast

Computing of Boundary Integral Equation Method by a Special-purpose Computer"
• Ramani Duraiswami (University of Maryland) "An Improved Fast Gauss Transform

and Applications"

© Duraiswami & Gumerov, 2003-2004CSCAMM FAM04: 04/19/2004

Tree Codes:

• Atsushi Kawai (Saitama Institute of Technology) "Fast
Algorithms on GRAPE Special-Purpose Computers"

• Walter Dehnen (University of Leicester) "falcON: A
Cartesian FMM for the Low-Accuracy Regime"

• Robert Krasny (University of Michigan) "A Treecode
Algorithm for Regularized Particle Interactions“

• Derek Richardson (University of Maryland)
"pkdgrav: A Parallel k-D Tree Gravity Solver for N-
Body Problems"

