An Introduction to Fast Multipole Methods

Ramani Duraiswami
Institute for Advanced Computer Studies
University of Maryland, College Park

http://www.umiacs.umd.edu/~ramani

Joint work with Nail A. Gumerov
CSCAMM FAM04: 04/19/2004

Fast Multipole Methods

- Computational simulation is becoming an accepted paradigm for scientific discovery.
\square Many simulations involve several million variables
- Most large problems boil down to solution of linear system or performing a matrix-vector product
- Regular product requires $O\left(N^{2}\right)$ time and $O\left(N^{2}\right)$ memory
- The FMM is a way to
\square accelerate the products of particular dense matrices with vectors
\square Do this using $O(N)$ memory
- FMM achieves product in $O(N)$ or $O(N \log N)$ time and memory
- Combined with iterative solution methods, can allow solution of problems hitherto unsolvable

Matrix vector product

$s_{1}=m_{11} x_{1}+m_{12} x_{2}+\ldots+m_{1 d} x_{d}$
$s_{2}=m_{21} x_{1}+m_{22} x_{2}+\ldots+m_{2 d} x_{d}$
...
$s_{n}=m_{n 1} x_{1}+m_{n 2} x_{2}+\ldots+m_{n d} x_{d}$

- Matrix vector product is identical to a sum

$$
s_{i}=\sum_{j=1}{ }^{d} m_{i j} x_{j}
$$

- So algorithm for fast matrix vector products is also a fast summation algorithm
- d products and sums per line
- N lines
- Total Nd products and $N d$ sums to calculate N entries
- Memory needed is NM entries

CSCAMM FAM04: 04/19/2004

Linear Systems

- Solve a system of equations

$$
M x=s
$$

- M is a $N \times N$ matrix, x is a N vector, s is a N vector
- Direct solution (Gauss elimination, LU Decomposition, SVD, ...) all need $O\left(N^{3}\right)$ operations
- Iterative methods typically converge in k steps with each step needing a matrix vector multiply $O\left(N^{2}\right)$
\square if properly designed, $k \ll N$
- A fast matrix vector multiplication algorithm requiring $O(N \log N)$ operations will speed all these algorithms

Is this important?

- Argument:

DMoore’s law: Processor speed doubles every 18 months
\square If we wait long enough the computer will get fast enough and let my inefficient algorithm tackle the problem

- Is this true?
-Yes for algorithms with same asymptotic complexity
-No!! For algorithms with different asymptotic complexity
- For a million variables, we would need about 16 generations of Moore's law before a $O\left(N^{2}\right)$ algorithm is comparable with a $O(N)$ algorithm
- Similarly, clever problem formulation can also achieve large savings.

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Memory complexity

- Sometimes we are not able to fit a problem in available memory
DDon’t care how long solution takes, just if we can solve it
- To store a $N \times N$ matrix we need N^{2} locations
$\square 1$ GB RAM $=1024^{3}=1,073,741,824$ bytes
- => largest N is 32,768
- "Out of core" algorithms copy partial results to disk, and keep only necessary part of the matrix in memory
\square Extremely slow
- FMM allows reduction of memory complexity as well

EElements of the matrix required for the product can be generated as needed
Can solve much larger problems (e.g., 10^{7} variables on a PC)

The need for fast algorithms

- Grand challenge problems in large numbers of variables
- Simulation of physical systems
\square Electromagnetics of complex systems
\square Stellar clusters
\square Protein folding
\square Acoustics
-Turbulence
- Learning theory

口Kernel methods
\square Support Vector Machines

- Graphics and Vision
-Light scattering ...

CSCAMM FAM04: 04/19/2004

- General problems in these areas can be posed in terms of millions $\left(10^{6}\right)$ or billions $\left(10^{9}\right)$ of variables
- Recall Avogadro’s number (6.022 14199×10^{23} molecules/mole
- Job of modeling is to find symmetries and representations that reduce the size of the problem
- Even after state of art modeling, problem size may be large

Dense and Sparse matrices

- Operation estimates are for dense matrices. \square Majority of elements of the matrix are non-zero
- However in many applications matrices are sparse
- A sparse matrix (or vector, or array) is one in which most of the elements are zero.
DIf storage space is more important than access speed, it may be preferable to store a sparse matrix as a list of (index, value) pairs.
\square For a given sparsity structure it may be possible to define a fast matrix-vector product/linear system algorithm

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

- Can compute

$$
\left[\begin{array}{|l|l|l|l|l|}
\hline a_{1} & 0 & 0 & 0 & 0 \\
\hline 0 & a_{2} & 0 & 0 & 0 \\
\hline 0 & 0 & a_{3} & 0 & 0 \\
\hline 0 & 0 & 0 & a_{4} & 0 \\
\hline 0 & 0 & 0 & 0 & a_{5} \\
\hline
\end{array}\right]\left[\begin{array}{|l|}
\hline x_{1} \\
\hline x_{2} \\
\hline x_{3} \\
\hline x_{4} \\
\hline x_{5} \\
\hline
\end{array}\right]=\left[\begin{array}{l}
\hline a_{1} x_{1} \\
\hline a_{2} x_{2} \\
\hline a_{3} x_{3} \\
\hline a_{4} x_{4} \\
\hline a_{5} x_{5} \\
\hline
\end{array}\right.
$$

In 5 operations instead of 25 operations

- Sparse matrices are not our concern here

Structured matrices

- Fast algorithms have been found for many dense matrices
- Typically the matrices have some "structure"
- Definition:
\square A dense matrix of order $N \times N$ is called structured if its entries depend on only $O(N)$ parameters.
- Most famous example - the fast Fourier transform

Fourier Matrices

A Fourier matrix of order n is defined as the following

$$
F_{n}=\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \cdots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \cdots & \omega_{n}^{2(n-1)} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \cdots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right]
$$

where

$$
\omega_{n}=e^{-\frac{2 \pi i}{n}},
$$

is an nth root of unity.

FFT presented by Cooley and Tukey in 1965, but invented several times, including by Gauss (1809) and Danielson \& Lanczos (1948)

FFT and IFFT

The discrete Fourier transform of a vector x is the product $F_{n} x$.
The inverse discrete Fourier transform of a vector x is the product $F_{n}^{*} x$.

Both products can be done efficiently using the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT) in $O(n \log n)$ time.

The FFT has revolutionized many applications by reducing the complexity by a factor of almost n

Can relate many other matrices to the Fourier Matrix

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Structured Matrices

- (usually) these matrices can be diagonalized by the Fourier matrix
- Product of diagonal matrix and vector requires O(N) operations
- So complexity is the cost of FFT $(\mathrm{O}(N \log N))+$ product ($\mathrm{O}(\mathrm{N})$)
- Order notation
\square Only keep leading order term (asymptotically important) \square So complexity of the above is $\mathrm{O}(N \log N)$
- Structured Matrix algorithms are "brittle"

DFFT requires uniform sampling
-Slight departure from uniformity breaks factorization
CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Fast Multipole Methods (FMM)

- Introduced by Rokhlin \& Greengard in 1987
- Called one of the 10 most significant advances in computing of the $20^{\text {th }}$ century
- Speeds up matrix-vector products (sums) of a particular type

$$
s\left(x_{j}\right)=\sum_{i=1}^{N} \alpha_{i} \phi\left(x_{j}-x_{i}\right), \quad\left\{s_{j}\right\}=\left[\Phi_{j i}\right]\left\{\alpha_{i}\right\}
$$

- Above sum requires $O(M N)$ operations.
- For a given precision ε the FMM achieves the evaluation in $O(M+N)$ operations.
- Edelman: "FMM is all about adding functions" Talk on Tuesday, next week

Is the FMM a structured matrix algorithm?

- FFT and other algorithms work on structured matrices
- What about FMM ?
- Speeds up matrix-vector products (sums) of a particular type

$$
\begin{aligned}
s\left(\mathbf{y}_{j}\right)= & \sum_{i=1}^{N} a_{i} \phi\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right) \\
& \\
& \mathbf{s}=\mathbf{\Phi} \mathbf{a}
\end{aligned} \quad\left\{s_{j}\right\}=\left[\Phi_{j i}\right]\left\{\alpha_{i}\right\} .
$$

- Above sum also depends on $O(N)$ parameters $\left\{\mathrm{x}_{\mathrm{i}}\right\},\left\{\mathrm{y}_{\mathrm{j}}\right\}, \phi$
- FMM can be thought of as working on "loosely" structured matrices
- Can accelerate matrix vector products
\square Convert $O\left(N^{2}\right)$ to $O(N \log N)$
- However, can also accelerate linear system solution Convert $O\left(N^{3}\right)$ to $O(\mathrm{kN} \log N)$ \square For some iterative schemes can guarantee $k \leq N$

DIn general, goal of research in iterative methods is to reduce value of k
WWell designed iterative methods can converge in very few steps
aActive research area: design iterative methods for the FMM

A very simple algorithm

- Not FMM, but has some key ideas
- Consider

$$
S\left(x_{i}\right)=\sum_{j=1}^{N} \alpha_{j}\left(x_{i}-y_{j}\right)^{2} \quad i=1, \ldots, M
$$

- Naïve way to evaluate the sum will require $M N$ operations
- Instead can write the sum as

$$
S\left(x_{i}\right)=\left(\sum_{j=1}^{N} \alpha_{j}\right) x_{i}^{2}+\left(\sum_{j=1}^{N} \alpha_{j} y_{j}^{2}\right)-2 x_{i}\left(\sum_{j=1}^{N} \alpha_{j} y_{j}\right)
$$

\square Can evaluate each bracketed sum over j and evaluate an expression of the type

$$
S\left(x_{i}\right)=\beta x_{i}^{2}+\gamma-2 x_{i} \delta
$$

\square Requires $\mathrm{O}(\mathrm{M}+\mathrm{N})$ operations

- Key idea - use of analytical manipulation of series to achieve faster summation
- May not always be possible to simply factorize matrix entries

Approximate evaluation

- FMM introduces another key idea or "philosophy"

DIn scientific computing we almost never seek exact answers
\square At best, "exact" means to "machine precision"

- So instead of solving the problem we can solve a "nearby" problem that gives "almost" the same answer
-If this "nearby" problem is much easier to solve, and we can bound the error analytically we are done.
- In the case of the FMM

DExpress functions in some appropriate functional space with a given basis
\square Manipulate series to achieve approximate evaluation
UUse analytical expression to bound the error

- FFT is exact ... FMM can be arbitrarily accurate

Approximation Algorithms

- Computer science approximation algorithms
\square Approximation algorithms are usually directed at reducing complexity of exponential algorithms by performing approximate computations
DHere the goal is to reduce polynomial complexity to linear order Connections between FMM and CS approximation algorithms are not much explored

Tree Codes

- Idea of approximately evaluating matrix vector products preceded FMM
- Tree codes (Barnes and Hut, 1986)
- Divides domain into regions and use approximate representations
- Key difference: lack error bounds, and automatic ways of adjusting representations
- Perceived to be easier to program

Complexity

- The most common complexities are
\square O(1) - not proportional to any variable number, i.e. a fixed/constant amount of time
O(N) - proportional to the size of N (this includes a loop to N and loops to constant multiples of N such as $0.5 \mathrm{~N}, 2 \mathrm{~N}, 2000 \mathrm{~N}$ - no matter what that is, if you double N you expect (on average) the program to take twice as long)
- $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$ - proportional to N squared (you double N , you expect it to take four times longer - usually two nested loops both dependent on N).
$\square \mathrm{O}(\log \mathrm{N})$ - this is tricker to show - usually the result of binary splitting.
- $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ this is usually caused by doing $\log \mathrm{N}$ splits but also doing N amount of work at each "layer" of splitting.
\square Exponential $\mathrm{O}\left(\mathrm{a}^{\mathrm{N}}\right)$: grows faster than any power of N

Some FMM algorithms

- Molecular and stellar dynamics

Computation of force fields and dynamics

- Interpolation with Radial Basis Functions
- Solution of acoustical scattering problems
-Helmholtz Equation
- Electromagnetic Wave scattering
-Maxwell's equations
- Fluid Mechanics: Potential flow, vortex flow
\square Laplace/Poisson equations
- Fast nonuniform Fourier transform

Integral Equation

- FMM is often used in integral equations
- What is an integral equation?

$$
\begin{gathered}
\int k(x, y) u(x) d x+a u(y)=f(y) \\
\int k(x, y) u(x) d x=f(y)
\end{gathered}
$$

- Function $k(x, y)$ is called the kernel
- Integral equations are typically solved by "quadrature"
\square Quadrature is the process of approximately evaluating an integral
- If we can write

$$
\int k(x, y) u(x) d x=\sum_{j=1}^{N} k\left(x_{j}, y\right) u\left(x_{j}\right) w_{j}
$$

FMM-able Matrices

$$
\begin{gathered}
\mathbf{v}=\mathbf{\Phi} \mathbf{u} \\
\mathbf{\Phi}=\left(\begin{array}{cccc}
\Phi\left(\mathbf{y}_{1}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{N}\right) \\
\Phi\left(\mathbf{y}_{2}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{M}\right) \\
\ldots & \ldots & \ldots & \ldots \\
\Phi\left(\mathbf{y}_{M}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{N}\right)
\end{array}\right) . \\
\mathrm{X}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{M}\right\}, \quad \mathbf{x}_{i} \in \mathrm{R}^{d}, \quad i=1, \ldots, N \\
\mathrm{Y}=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{M}\right\}, \quad \mathbf{y}_{j} \in \mathrm{R}^{d}, \quad j=1, \ldots, M . \\
v_{j}=\sum_{i=1}^{N} u_{i} \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right), \quad j=1, \ldots, M .
\end{gathered}
$$

Factorization

Degenerate Kernel:

$$
\begin{gathered}
\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{m=0}^{p-1} A_{m}\left(\mathbf{x}_{i}\right) F_{m}\left(\mathbf{y}_{j}\right) . \\
v_{j}=\sum_{i=1}^{N} u_{i} \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{i=1}^{N} u_{i} \sum_{m=0}^{p-1} A_{m}\left(\mathbf{x}_{i}\right) F_{m}\left(\mathbf{y}_{j}\right) \\
=\sum_{m=0}^{p-1}\left[\sum_{i=1}^{N} u_{i} A_{m}\left(\mathbf{x}_{i}\right)\right] F_{m}\left(\mathbf{y}_{j}\right)=\sum_{m=0}^{p-1} B_{m} F_{m}\left(\mathbf{y}_{j}\right) .
\end{gathered}
$$

$O(p N)$ operations:

$$
B_{m}=\sum_{i=1}^{N} u_{i} A_{m}\left(\mathbf{x}_{\mathbf{i}}\right), \quad m=0, \ldots, p-1,
$$

$O(p M)$ operations:

$$
v_{j}=\sum_{m=0}^{p-1} B_{m} F_{m}\left(\mathbf{y}_{j}\right), j=1, \ldots, M .
$$

Total Complexity: $O(p(N+M))$
CSCAMM FAM04: 04/19/2004

"Middleman" Algorithm

Standard algorithm

Total number of operations: $\boldsymbol{O}(\mathbf{N M})$

Middleman algorithm

Total number of operations: $\boldsymbol{O}(\mathbf{N}+\boldsymbol{M})$
© Duraiswami \& Gumerov, 2003-2004

Factorization

Non-Degenerate Kernel:

$$
\begin{aligned}
& \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{m=0}^{p-1} A_{m}\left(\mathbf{x}_{i}\right) F_{m}\left(\mathbf{y}_{j}\right)+\operatorname{Error}\left(p ; \mathbf{x}_{i}, \mathbf{y}_{j}\right) . \\
& v_{j}=\sum_{i=1}^{N} u_{i} \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{i=1}^{N} u_{i} \sum_{m=0}^{p-1} A_{m}\left(\mathbf{x}_{i}\right) F_{m}\left(\mathbf{y}_{j}\right)+\sum_{i=1}^{N} u_{i} \operatorname{Error}\left(p_{i} \mathbf{x}_{i}, \mathbf{y}_{j}\right) \\
& =\sum_{m=0}^{p-1} B_{m} F_{m}\left(\mathbf{y}_{j}\right)+\operatorname{Error}_{j}(p, N), \quad j=1, \ldots, M .
\end{aligned}
$$

Middleman Algorithm $p \ll \min (M, N)$,
Applicability:
$\left|\operatorname{Error}_{j}(p, N)\right|<\epsilon$.

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Factorization Problem:

-Usually there is no factorization available that provides a uniform approximation of the kernel in the entire computational domain.

- So we have to construct a patchwork-quilt of overlapping approximations, and manage this.
-Need representations of functions that allow this
-Need data structures for the management

Five Key Stones of FMM

- Representation and Factorization
- Error Bounds and Truncation
- Translation
- Space Partitioning
- Data Structures

Fast Multipole Methods

- Middleman (separation of variables)
\square No space partitioning
- Single Level Methods
\square Simple space partitioning (usually boxes)
- Multilevel FMM (MLFMM)

I Multiple levels of space partitioning (usually hierarchical boxes)

- Adaptive MLFMM
\square Data dependent space partitioning

Examples of Matrices

0 Green's functions of Laplace and Helmholtz equations

$$
\begin{gathered}
\Phi(\mathbf{y}, \mathbf{x})=\frac{1}{4 \pi|\mathbf{y}-\mathbf{x}|} \\
\Phi(\mathbf{y}, \mathbf{x})=\frac{\exp \{i k|\mathbf{y}-\mathbf{x}|\}}{4 \pi|\mathbf{y}-\mathbf{x}|} .
\end{gathered}
$$

0 Potential velocity field of a source located at \mathbf{x}_{i}

$$
\Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\mathrm{V}\left(\mathbf{y}, \mathbf{x}_{i}\right)=\frac{1}{4 \pi} \nabla_{\mathbf{y}} \frac{1}{\left|\mathbf{y}-\mathbf{x}_{i}\right|} .
$$

Q Normal derivative on the surface

$$
\Phi(\mathbf{y}, \mathbf{x})=\frac{\partial}{\partial n(\mathbf{x})} \frac{1}{4 \pi|\mathbf{y}-\mathbf{x}|}=\mathbf{n}(\mathbf{x}) \cdot \nabla_{\mathbf{x}} \frac{1}{4 \pi|\mathbf{y}-\mathbf{x}|}
$$

- Vorticity (vortex element is located at \mathbf{x}_{i})

$$
\Phi\left(\mathbf{y}, \mathbf{x}_{i}\right)=\nabla_{\mathbf{y}} \times \mathbf{V}\left(\mathbf{y}, \mathbf{x}_{i}\right)
$$

Iterative Methods

- To solve linear systems of equations;
- Simple iteration methods;
- Conjugate gradient or similar methods;
- We use Krylov subspace methods:

DParameters of the method;
DPreconditioners;
\square Research is ongoing.

- Efficiency critically depends on efficiency of the matrix-vector multiplication.

Far and Near Field Expansions

Far Field: $\quad \Phi\left(\mathbf{y}_{j} \mathbf{x}_{i}\right)=\sum_{m=0}^{p-1} C_{m}\left(\mathbf{x}_{i}, \mathbf{x}_{*}\right) S_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)+$ Error.
Near Field: $\quad \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{m=0}^{p-1} D_{m}\left(\mathbf{x}_{i}, \mathbf{x}_{*}\right) R_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)+$ Error.

S: "Singular"
(also "Multipole", "Outer" "Far Field"),

R: "Regular"
(also "Local", "Inner"
"Near Field")
© Duraiswami \& Gumerov, 2003-2004

Example of Multipole and Local expansions (3D Laplace)

Spherical Coordinates:
$\mathbf{r}=r(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$
CSCAMM FAM04: 04/19/2004

$$
\begin{aligned}
\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right) & =\sum_{n=0}^{p-1} \sum_{m=-n}^{n} C_{n}^{m} S_{n}^{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)+\operatorname{Error}(p), \\
\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right) & =\sum_{n=0}^{p-1} \sum_{m=-n}^{n} D_{n}^{m} R_{n}^{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)+\operatorname{Error}(p), \\
S_{n}^{m}(\mathbf{r}) & =\frac{\left.(-1)^{n}\right)^{|m|} \mid}{\alpha_{n}^{m}} \sqrt{\frac{4 \pi}{2 n+1}} \frac{1}{r^{n+1}} 1_{n}^{m}(\theta, \varphi), \\
R_{n}^{m}(\mathbf{r}) & =i^{-p \mid} \alpha_{n}^{m} \\
\alpha_{n}^{\frac{4 \pi}{2 n+1}} r^{n} Y_{n}^{m}(\theta, \varphi), & \alpha_{n}^{-m}=\frac{(-1)^{n}}{\sqrt{(n-m)!(n+m)!}} .
\end{aligned}
$$

Spherical Harmonics:
$Y_{n}^{m}(\theta, \varphi)=(-1)^{m} \sqrt{\frac{2 n+1}{4 \pi} \frac{(n-|m|)!}{(n+|m|)!}} P_{n}^{|m|}(\cos \theta) e^{i m \varphi}$

Idea of a Single Level FMM

Standard algorithm

Total number of operations: \boldsymbol{O} (NM) CSCAMM FAM04: 04/19/2004

SLFMM

Needs Translation!

Total nụmber of operations: $\mathbf{O}(N+M+K L)$ © Duraiswami \& Gumerov, 2003-2004

Multipole-to-Local S|R-translation

Also "Far-to-Local", "Outer-to-Inner", "Multipole-to-Local"

S|R-translation Operator

$$
\begin{gathered}
\Phi(\mathbf{y})=\sum_{m=0}^{p-1} C_{m} S_{m}\left(\mathbf{y}-\mathbf{x}_{* 1}\right)+\text { Error. } \\
\Phi(\mathbf{y})=\sum_{m=0}^{p-1} D_{m} R_{m}\left(\mathbf{y}-\mathbf{x}_{* 2}\right)+\text { Error. } \\
S_{n}\left(\mathbf{y}-\mathbf{x}_{\star+1}\right)=\sum_{m=0}^{p-1}(S \mid R)_{m n}\left(\mathbf{x}_{* 2}-\mathbf{x}_{\star 1}\right) R_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{\star 2}\right)+\text { Error. } \\
\left.D_{m}\left(\mathbf{y}-\mathbf{x}_{* 1}\right)=\sum_{m=0}^{p-1}(S \mid R)_{m n} \mathbf{N}_{m+2}-\mathbf{x}_{*+1}\right) C_{n}\left(\mathbf{y}_{j}-\mathbf{x}_{* 2}\right)+\text { Error } .
\end{gathered}
$$

S|R-translation Operators for 3D Laplace and Helmholtz equations

$$
\begin{gathered}
\Phi(\mathbf{y})=\sum_{n=0}^{p-1} \sum_{m=n}^{n} C_{n}^{m} S_{n}^{m}\left(\mathbf{y}-\mathbf{x}_{* 1}\right)+\text { Error } . \\
\Phi(\mathbf{y})=\sum_{n=0}^{p-1} \sum_{m=-n}^{n} D_{n}^{m} R_{n}^{m}\left(\mathbf{y}-\mathbf{x}_{* 2}\right)+\text { Error. } \\
S_{n}^{m}\left(\mathbf{y}-\mathbf{x}_{* 1}\right)=\sum_{n^{\prime}=0}^{p-1} \sum_{m^{\prime}=-n^{\prime}}^{n^{\prime}}(S \mid R)_{n_{n}}^{m^{\prime} m}\left(\mathbf{x}_{* 2}-\mathbf{x}_{* 1}\right) R_{n^{\prime}}^{m^{\prime}}\left(\mathbf{y}_{j}-\mathbf{x}_{* 2}\right)+\text { Error. } \\
D_{n}^{m}\left(\mathbf{y}-\mathbf{x}_{* 1}\right)=\sum_{n^{\prime}=0}^{p-1} \sum_{m^{\prime}=-n^{\prime}}^{n^{\prime}}(S \mid R)_{n n^{\prime}}^{m m^{\prime}}\left(\mathbf{x}_{* 2}-\mathbf{x}_{* 1}\right) C_{n^{\prime}}^{m^{\prime}}\left(\mathbf{y}_{j}-\mathbf{x}_{* 2}\right)+\text { Error. } .
\end{gathered}
$$

Idea of Multilevel FMM

Source Data Hierarchy
Evaluation Data Hierarchy

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Complexity of Translation

- For 3D Laplace and Helmholtz series have p^{2} terms;
- Translation matrices have p^{4} elements;
- Translation performed by direct matrix-vector multiplication has complexity $O\left(p^{4}\right)$;
- Can be reduced to $O\left(p^{3}\right)$;
- Can be reduced to $O\left(p^{2} \log ^{2} p\right)$;
- Can be reduced to $O\left(p^{2}\right)(?)$.

Week 2: Representations

- Gregory Beylkin (University of Colorado) "Separated

Representations and Fast Adaptive Algorithms in Multiple Dimensions"

- Alan Edelman (MIT) "Fast Multipole: It's All About Adding Functions in Finite Precision"
- Vladimir Rokhlin (Yale University) "Fast Multipole Methods in Oscillatory Environments: Overview and Current State of Implementation"
- Ramani Duraiswami (University of Maryland) "An Improved Fast Gauss Transform and Applications"
- Eric Michielssen (University of Illinois at Urbana-Champaign) "Plane Wave Time Domain Accelerated Integral Equation Solvers"

CSCAMM FAM04: 04/19/2004
© Duraiswami \& Gumerov, 2003-2004

Week 2: Data Structures

- David Mount (University of Maryland) "Data Structures for Approximate Proximity and Range Searching"
- Alexander Gray (Carnegie Mellon University) "New Lightweight N-body Algorithms"
- Ramani Duraiswami (University of Maryland) "An Improved Fast Gauss Transform and Applications"

Week 2: Applications

- Nail Gumerov (University of Maryland) "Computation of 3D Scattering from Clusters of Spheres using the Fast Multipole Method"
- Weng Chew (University of Illinois at Urbana-Champaign) "Review of Some Fast Algorithms for Electromagnetic Scattering"
- Leslie Greengard (Courant Institute, NYU) "FMM Libraries for Computational Electromagnetics"
- Qing Liu (Duke University) "NUFFT, Discontinuous Fast Fourier Transform, and Some Applications"
- Eric Michielssen (University of Illinois at Urbana-Champaign) "Plane Wave Time Domain Accelerated Integral Equation Solvers"
- Gregory Rodin (University of Texas, Austin) "Periodic Conduction Problems: Fast Multipole Method and Convergence of Integral Equations and Lattice Sums"
- Stephen Wandzura (Hughes Research Laboratories) "Fast Methods for Fast Computers"
- Toru Takahashi (Institue of Physical and Chemical Research (RIKEN), Japan) "Fast Computing of Boundary Integral Equation Method by a Special-purpose Computer"
- Ramani Duraiswami (University of Maryland) "An Improved Fast Gauss Transform and Applications"

Tree Codes:

- Atsushi Kawai (Saitama Institute of Technology) "Fast Algorithms on GRAPE Special-Purpose Computers"
- Walter Dehnen (University of Leicester) "falcON: A Cartesian FMM for the Low-Accuracy Regime"
- Robert Krasny (University of Michigan) "A Treecode Algorithm for Regularized Particle Interactions"
- Derek Richardson (University of Maryland) "pkdgrav: A Parallel k-D Tree Gravity Solver for NBody Problems"

