
The spectral element (SE) method avoids  

the pole problem by using cubed-sphere  

grids in which the sphere is tiled with  

quadrilateral elements. The SE is ideal  

for its implementation on massive CPUs.  

While the communication within each  

element is global, elements need only boundary 

information from their neighboring elements. To date, 

application of the SE method to numerical atmospheric 

modeling has focused on climate prediction, e.g. CAM-SE. If 

we can develop data assimilation systems applicable to it, 

SE may be used for even NWP modeling.  

Spectral transformations often have a role of horizontal 

filtering of error correlations in data assimilation systems. 

To apply Fourier and Legendre transformations for any 

fields given on cubed-sphere grids, we should have to 

interpolate the variables onto Gaussian grids. However, it 

yields interpolation errors and re-distribution of data on 

memories. We thus developed a spectral transformation 

method working directly on a cubed-sphere grid system.  

 

 

 

 

 

 

 

 

 

 

 

 

Motivations 

A small displacement on a sphere (𝜆, 𝜃, 𝑅) is defined as 

                                                                . 

Unit vectors in an equi-angular coordinate  

(𝛼, 𝛽, 𝑅) are non-orthogonal, that is, the equi- 

angular coordinate is a curvilinear system. 

(Nair 2008). The covariant unit vectors and 

covariant components are written as 

 

 

Then, a vector on the sphere can be expressed by 

contravariant components: 

 

A matrix (D) for transforming contravariant components in 

equi-angular coordinates to orthogonal components in 

spherical coordinate is 

 

 

 

By using D, we can define a metric tensor g, 

 

And the integration on the cubed-sphere grid is described 

as (Levy et al. 2008) 

 

 

In spherical coordinate, we obtain the spectral coefficients 

with the numerical integration of the following integrand: 

 

 

Here, 𝑌𝑙
𝑚 is normalized spherical harmonic functions. It is 

in a real form 

 

 

 

 

 

With using the boxed formulation, in the cubed-sphere grid 

with equi-angular coordinates, the spectral transformation 

is 

 

 

It is discretized as follows: 

 

 

This is the spectral transformation on the cubed-sphere 

grid with the equi-angular coordinates (Song et al. 2013). 

𝑤 is the local Gaussian quadrature for each grid points in 

an element. A hat means the coefficients of Lagrange 

polynomials defined in each element: 

Development of a Spectral Transformation 

on Cubed-Sphere Grids 

After 63 wavenumber, errors in orth- 

ogonality, eigenvalues of Laplacian 

defined in cubed-sphere grids, 

and synthesis abruptly increase wiith 

using ne = 16, np = 4 (Fig. 1). 

When grid points should represent more 

waves, accuracy of the estimation of 

the eigenvalues becomes less (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

Verification of the Spectral Transformation on Cubed-Sphere Grids Discussions 

Analysis of zonal wind has large increments over the 

wavenumbers for baroclinic waves (Fig. 6a). The variance of 

deviations normalized by the error standard deviations on grids 

well show that the zonal wind have considerable amounts of 

variability around wavenumber 10 and it explains the feature of 

analysis increments (Fig. 6b). The substantial increments over 

high frequencies are considered as contributed by the error 

standard deviations having high-frequency feature (Fig 3a,b). 

Temperature tends to have larger increments as wavenumber gets 

smaller (Fig. 6a). It is a reflection of the structure of the variance 

of the normalized deviations (Fig 6b). Note that even the grid-

point error standard deviations of temperature have large-scale 

feature unlike those of zonal wind (Fig. 3). 

 

 

 

 

 

 

 

Vertical error covariance for wavenumber 10 (zonal wavenumber 

0) reveals baroclinic structure in zonal wind (variable index 1-30 

corresponding to model level 1-30) (Fig. 7b). On the other hand, 

that for wavenumber 1 shows barotropic structures in zonal wind 

and temperature (variable index 31-60) (Fig. 7a). It supports the 

barotropic shape of analysis increment of temperature of which 

substantial portions are low-frequency components. 
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Hyo-Jong Songa, Jihye Kwunb, and Sang-Yoon Junc 

Application of a Spectral Transform on Cubed-Sphere Grids to 
Representation of Forecast Errors for Variational Data Assimilation 

 

Climatological mean of March to June every 12 UTC after 2-year CAM-SE climatological run is used as a background 

state. Observations are radiosonde data on 12 UTC in 10 Aug. 2011 (the positions denoted by small dots in Fig. 5). A cost 

function of 3D-Var using the spectral transformation (S) and inverse is when Bvar means error variances for grid points 

 

 

 

 

The background error standard deviations of zonal winds have smaller scale in space than those of temperature do (Fig 

3). To measure performance, we assume an ERA interim data corresponding to observation time as a truth. In Northern 

Hemisphere, the analysis increments of temperature well match the background error (Fig 4c,d and 5c,d). The analysis 

increments at 850 hPa in the Antarctic region against the background error is a interesting feature. In the case of zonal 

winds, on the NH continents having rich sondes, the analysis increments tend to reduce the background error. In Arctic 

regions, the phases of background errors and analysis increments are overlapped.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application to Variational Data Assimilation 

Summary and Remarks 

We developed spectral transformation modules that work on 

cubed-sphere grids. When the configuration of cubed-sphere grids 

is ne = 16, np = 4, we determined that the grid points can 

represent up to waves of wavenumber 63 (Fig. 1). 

As a result of application to variational data assimilation, we 

obtain the understandable background error covariance structures 

and analysis increments (Fig. 3-7). The shapes of spectral error 

variance and vertical error covariance for two wavenumber 

coincide with climatological features of large-scale dynamics (Fig. 

6 and 7). 

Fig. 8 presents how each configuration 

of cubed-sphere grids can resolve the  

waves. The greater np is, the better 

the resolution of cubed-sphere grids is. 

Reproducing this experiment with a gre- 

ater np and lower ne may be interesting. 
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