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Why adaptive localization?

In geophysical systems, the state dimension is very large.
For these systems, Ensemble Kalman Filter Methods need
to be localized to get result.

Tuning the localization parameter is very expensive. The
dependence on other parameters is still unknown and the
localization need to be retuned every time the model pa-
rameter are changed.

Are there some underlying relations between the assimi-
lation parameters that can be used when setting up the
system?

To answer this question the dependence of the localization
radius and the ensemble size is examined in the case of very
dense observations (e.g. sea surface height)

The aim is to reduce the effort to calibrate a data assimi-
lation system and improve the assimilation performance.

L96 SWE FESOM

Nonlinear Yes Yes Yes
Variables 1 3 10

Dimension 96 ≈ 20.000 ≈ 107

Filter LETKF LETKF LETKF
Ensemble size 5− 40 8− 40 32
Weight function DL/OL/EXP DL/OL OL
Inflation 1.05 1.05 1.1
Observation dim. 96 6400 68000
Localization radius 0− 40 20km− 340km variable

Tab.1: Model and Filterparameter for the Lorenz-96
(L96) a shallow water model (SWE) and the global
ocean model (FESOM).
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The relation between the ensemble size and the localization
radius was examined for different parameter settings and
different models with increasing complexity.

Twin experiments for various different localization radii and
ensemble sizes are computed (see. Tab.1) and averaged
over several runs.

Three different weighting functions were used:

• Uniform weighting (DL)

• The 5th order polynomial (OL)

• Exponential weighting (EXP)

The results were classified into ”converged” and ”diverged”
results, where a result was defined as diverged if the mean
RMS error was larger than the observational error.

Since the results of L96 and SWE are very similar, only the
latter is shown here.

The mean RMS error for the different
configurations shows a regular pattern.
This did not change for both the L96
and the SWE model.

When a uniform weight is used to
weight the observations for DL, the re-
lation between the optimal localization
radius and the localization radius is lin-
ear. This does not hold if the expo-
nential or the 5th order polynomial are
used.

But the results can be linked if in-
stead of the localization radius an ef-
fective observation dimension is
considered. This number is defined as
the sum of all observation weights. It
turns out, that this number behaves
similar regardless of the weight function
used.

An explanation is that the ensemble can
only fit as many observations as there
are degrees of freedom inside the en-
semble. This does not change if the
weights of the observations is reduced,
but the degrees are distributed over
more observations.

This motivates an adaptive localization
radius that can be defined, by choosing
the localization radius, so that the ef-
fective localization radius is equivalent
to the ensemble size.
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An adaptive localization radius
was implemented in the FE-
SOM model using the PDAF ([2],
http://pdaf.awi.de)

The spatially varying localization
radius was compared against two
fixed localization radii (1000km
and 500km).

Synthetic observations of the full
sea surface field have been assim-
ilated,

The large localization radius
(1000km) reduces the RMS very
quickly, but is increasing again to-
wards the end of the assimilation
experiment.

The results with the smaller and
the adaptive localization radius are
similar and, in contrast to the
larger localization radius, the rela-
tive RMS is decreasing over time.

The relative RMS with the vary-
ing localization radius is slightly
reduced the RMS compared to the
fixed one.

An advantage of the adaptive lo-
calization is that there is no need
to tune the localization

We investigated whether the optimal localization radius is
consistent with the best approximation of the covariance
matrix for the L96 model.

This was done by calculating the sampling error of the anal-
ysis covariance matrix. We considered two cases, the whole
covariance matrix, and the part that is considered in the
analysis.

If the localization radius is too small, the approximation of
the covariance matrix is bad.

The best approximation of the covariance matrix coincides
with optimal localization radius.

If the analysis is diverged, the local analysis gets as bad as
a global one.

0 5 10 15 20
0

1

2

3

4

5
Sampling quality of the covariance matrix 

localization length

sa
m
p
li
n
g
e
rr
o
r

 

 

Full matrix

Local matrix

Divergent radius

Optimal loc. rad.

The error of the full and the partial covari-
ance matrix that is used in the analysis.

From the experiments using the toy models it became clear, that the
optimal localization radius in the Ensemble Kalman Filter is dependent
on the ensemble size and the observation density.

For the toy models investigated in this study, there is an approxi-
mately linear relationship between the ensemble size and the optimal
localization radius.

If a different weighting function is used, the optimal localization radius
was achieved when the effective localization radius is in the order of
the ensemble size.

An Ensemble Kalman Filter using this estimate to define an adaptive
localization radius performed comparable to an optimal tuned local-
ization radius on a global ocean model. These result was achieved
without further tuning.
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