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Improved proposal densities for particle filters 

Particle filters 

 Particle filters are Monte Carlo implementations of Bayes theorem, in which the prior probability 

is weakly approximated by an ensemble of M weighted particles.  

 

 

 

       

 One can use proposal densities other than the prior and weight accordingly. In particular, these 

can include information about (future) observations:  

 Then 

Abstract 
The standard implementation of particle filters is unfeasible in large dimensional geophysical systems. The ensemble tends to collapse in few particles (degeneracy 

of weights) when the number of independent observations is large. An alternative is to use proposal densities other than the prior. In this work we use simple 
nudging and 4dvar as improved proposal densities. The results suggest that the use of 4dvar with an additional equal-weights step is promising. 

posterior likelihood 

     




 xxxyy dppp |

 
   

 y

xxy
yx

p

pp
p

|
| 

prior: 

marginal probability of the observations: 
(common to all particles) 
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Conditioning on the background probability 

 In the absence of model error we can estimate the posterior                         as: 

  

 with 3 options for  proposals: 

 - The prior 

 - Simple nudging 
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 Corresponds to 

using the prior as 

proposal 

proposal 

Conditioning on the transition probability 

 In PF, usually one does not worry about the background and uses the transition probability as 

proposal 

 

 

 

 with 3 options for  proposals: 

 - The transition density 

 - Simple nudging 
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use particle 
representation 
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0  corresponds to using the transition as proposal 

Equivalent weight steps. 

 Even the optimal proposal density degenerates. One can set a target weight , propose an 

‘incomplete’ 4dvar solution                  and solve for c from the 

equation: 

 

 (See [1] for more details on how to add a stochastic component to this deterministic move). 

Figure 1: Effective 
ensemble size (ESS, 
top row) and  root 
mean squared error 
(RMSE, bottom 
row) of the 
posterior mean for 
different given 
observations 
(horizontal axis) 
and different 
nudging strength 
(vertical axis) and 2 
state space sizes 
(columns). 

Figure 3: ESS and RMSE for the 
3 proposal densities, 1 given 
observation and different state 
space dimensions (horizontal 
axis). 
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A simple system 

 We will use the following system for our experiments, consisting of 1 forecast and 1 assimilation step. 

 

 

 We consider a fixed ensemble size and different state space sizes. 

 Given observations are considered as: 

 The truth is                                                and the dynamics                . 
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Figure 2: ESS (left)  and RMSE 
(right) for 4dvar on B used as 
proposal for different given 
observations (horizontal axis) 
and state space sizes (vertical 
axis). By construction the 
weights are equal. 

 ½ is the optimal 

nudging strength. 

In general nudging 

slows degeneracy, 

but does not stop 

it. 
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Coming from families of solutions of the type: 
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Figure 4: ESS (top row) 
and RMSE for different 
given observations 
(horizontal axis) and 
different nudging strength 
(vertical axis) and 2 state 
space sizes (columns). 
Again the optimal 
nudging strength is  ½. In 
general, degeneracy 
occurs faster than when 
conditioning on the 
background.  

Coming from families of solutions of the type: 
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Figure 5: ESS (left)  and RMSE 
(right) for 4dvar on Q used as 
proposal for different given 
observations (horizontal axis) and 
state space sizes (vertical axis). In 
this case, degeneracy does occur. 

Figure 6: ESS and RMSE for the 
3 proposal densities, 1 given 
observation and different state 
space dimensions (horizontal 
axis). 
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Figure 7: ESS (top row) and 
RMSE (bottom row) for 4dvar 
on Q after applying the 
equivalent weight step for 2 
state space dimensions 
(columns) and given 
observations (horizontal axis).  
The vertical axis is the 
percentage of particles with 
equal weights. No resampling 
was applied.  

100% equal weights means all 
the particles have the weight 
of the worst particle. This may 
not be convenient (as shown), 
so that other threshold should 
be applied.  


