

A BUFR and GRIB Tailoring System for NPP/JPSS and GCOM Products

Yi Song¹, Thomas King¹, and Walter Wolf²

¹IMSG at NOAA Center for Satellite Applications and Research, College Park, MD 20749

²NOAA/NESDIS/STAR, College Park, MD 20749

Abstract

*A tailoring software system that will convert the satellite products into Binary Universal Form for the Representation of meteorological data (BUFR) and GRIdded Binary Edition 2 (GRIB2) formated files is under development at NOAA/NESDIS/STAR. This Reformatting Toolkit will convert the products of the NPOESS Preparatory Project (NPP)/Joint Polar Satellite System (JPSS) and the Global Change Observation Mission 1st - Water (GCOM-W1) Advanced Microwave Seanning Radiometer 2 (AMSR2) into BUFR and GRIB2 files. The current toolkit development schedule consists of four phases, each adding new tailoring capabilities. In phase 1, the NPP Cross-track Infrared Sounder (CrlS) Radiances, Advanced Technology Microwave Sounder (ATMS) Radiances visible/Infrared Imager Radiometer Stuite (VIIRS) Radiances and IDPS VIIRS Sea Surface Temperature (SST) will be converted into BUFR files. In phase 2, this software systems will reformat the NPP VIIRS Aerosol Optical Thickness (AOT), Ozone Mapping and Profiler Sutte (OMPS) Nadir Profile (NP) and OMPS Total Column (TC) data into BUFR files. In phase 3, the NPP VIIRS Polar Winds and ACSPO Sea Surface Temperature (SST) will be converted into BUFR files, and the Global and Regional Green Vegetation Fraction (GVP) will be converted into BUFR files, and the Global and Regional Green Vegetation Fraction (GVP) will be converted into GRIB2 files. In phase 4, this software Will converted into GRIB2 files. In phase 4, this software Buffer (ST), Sea Surface Temperature (SST), sea Surface Vinta (SSW) into BUFR files and Soil Moisture (SM) into GRIB2 files. Temperature (ST), Sea Surface Temperature (ST), Sea Surface Temperature (ST), Sea Surface Temperature (ST) will be converted into BUFR files and Soil Moisture (SM) into GRIB2 files. Temperature (ST) will be converted into GRIB2 files. The phase 4 this software surface temperature (ST) will be converted into GRIB2 files. The phase 4 this software surface Winds (SSW) into BUFR files Currently, the toolkit is running in the NPP Data Exploitation (N

Development History of BUFR and GRIB Reformatting Toolkit at NOAA/NESDIS

- July 08: IPT Branch Lead was informed to begin product development
- July 08: Worked with NDE to verify product
- Aug 08: Started to design the operational BUFR and GRIB Tailoring toolkit
- Apr 09: Preliminary Design Review
- Aug 09: ATMS BUFR table was finalized
- Sep 09: Critical Design Review
- June 10: VIIRS BUFR table was finalized
- May11: Decision to include only bands 12, 13, 15 and 16 in the VIIRS M-Band BUFR file
- •June 11: Decision to include only band 5 in the VIIRS I-Band BUFR file
- July 11: Subset of 399 CrIS channels was selected and included into BUFR file.
- Aug 11:Test utility h5augjpss and use this utility to convert HDF5 file to NetCDF4 file
- Oct 11: SST, AOT and OMPS Nadir Profile BUFR tables were approved as pre-operational
- Oct 11: Test Readiness Review for CrIS, ATMS and VIIRS SDR Products
- May 12: Delivered the BUFR/GRIB2 Toolkit phase 1 products (NPP CrIS, ATMS, VIIRS M-Band and I-Band radiances) to NDE operation system
- Feb 13: Delivered the BUFR/GRIB2 Toolkit phase 2 products (VIIRS AOT, IDPS SST, OMPS NP and TC) to NDE for operation
- Sep 13: Delivered the BUFR/GRIB2 Toolkit phase 3 products (VIIRS Polar WINFS, Global and Regional GVF, ACSPO SST) to NDE operation system

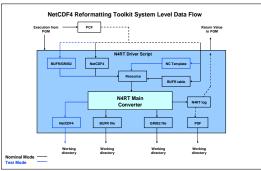
Future Development for the BUFR/GRIB2 Reformatting Toolkit at NOAA/NESDIS

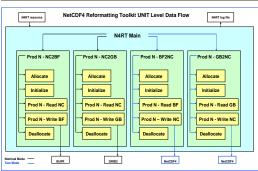
- Dec 14: Deliver the operational reformatting toolkit for OMPS Ozone Limb Profile BUFR product, and GCOM-W1 AMSR2 BUFR/GRIB2 products.
- The future functions to convert GOES-R products into BUFR/GRIB2 formatted files are being discussed and planned.

System Information

- BUFR and GRIB Tailoring System development is conducted on the NESDIS/STAR Linux machine. It is Intel(R) Xeon(R) CPU X5460 with Red Hat Enterprise Linux 5.9 . GNU compiler (grotran and qcc) and Intel compiler (ifort, icc/) are on it.
- The BUFR and GRIB Tailoring System testing and integration are conducted on the NDE SADIE integration platform. It is IBM P561 (AIX 5.3) with 50 TB disk space, 16 CPUs, 2 GB/CPU. IBM XL 7.0 C/C++ and IBM XL 11.1 Fortran 77/90 are on it.
- All data handling and algorithms are written in C++
- NCEP BUFRLIB 10.2.3, NCEP GRIB2 library 1.4.0, NetCDf4.1.3 and HDF5 1.8.9, the latest versions, are used in this system.

System Design


External interfaces:


- NDE is the interface for all NPP/NPOESS data within OSPO.
- · NDE DHS will schedule, manage, and monitor all NUCAPS processing operationally.
- NDE DDS handles all product distribution and access for input CrlS, ATMS, VIIRS radiance, SST, AOT, Polar Winds and Nadir Profile Ozone BUFR data.
- The NetCDF4 Reformatting Toolkit code will run as a stand-alone unit within the NDE DHS.

•Composed of 4 Components:

- NC2BF: Converts NetCDF4 file (input) to BUFR file (output).
- NC2GB: Converts NetCDF4 file (input) to GRIB2 file (output).
 BF2NC: Converts BUFR file (input) to NetCDF4 file (output).
- GB2NC: Converts GRIB2 file (input) to NetCDF4 file (output).

NetCDF4 Reformatting Toolkit External Interfaces NDE DHS Boundary Systems Configurations Process Res. NDE Product Generation Manager Reformatting Toolkit Driver Script Output Files By Sign Specifications Working Directory DAP Specifications Dupt Files By Sign Specifications NDE PROGRESS Res. NDE DDS NDE DDS NDE DDS

VIIRS Radiance BUFR Table Entries		
Satellite ID	Second	Satellite Azimuth
ID of Originating Center	Orbit number	Solar Zenith
ID of originating sub- center	Scan line number	Solar Azimuth
Satellite Instrument	Field of view number	Cloud Mask
Satellite classification	Type of Band	Surface Type
Year	Geolocation Quality	Channel Number
Month	Latitude	Channel Wavelength
Day	Longitude	Radiance Quality
Hour	Satellite Height	Channel Radiance
Minute	Satellite Zenith Angle	Channel Reflectance

Main Entries in VIIRS Polar Winds BUFR Table		
Latitude	Longitude	Satellite Zenith Angle
Surface type	Pressure	Temperature
Channel wavelength	Satellite derived wind computation method	Wind direction
Wind speed	Forecast wind direction	Forecast wind speed
Wind quality flags		

CrIS Radiance BUFR Table Entries		
Satellite ID	Satellite Azimuth	Radiance Type Flags
ID of Originating Center		Scan-Level Quality Flags
Satellite Instrument	Solar Azimuth	Type of Band
Satellite Classification	Ascending/Descending flag	Starting Wavenumber (per band)
Year	Scan Line Number	Ending Wavenumber (per band)
Month	Field of Regard	Start Channel (per band)
Day	Field of View	End Channel (per band)
Hour	Orbit Number	Calibration Quality Flags
Minute	Height of Land Surface	Field of View Quality Flags
Second	Satellite Height	Geolocation Quality
Location of Platform	Land Fraction	NUCAPS Quality
Latitude	Land/Sea Qualifier	Channel Number
Longitude	Cloud Cover	Channel Radiance
Satellite Zenith Angle	Height of Cloud Top	

ATMS Radiance BUFR Table Entries		
Satellite ID	Scan line number	Satellite antenna corrections version number
ID of Originating Center	FOV Number	Channel Number
ID of Originating Sub- Center	Granule level quality flags	Channel Central Frequencies
Satellite Instrument	Scan-Level Quality Flags	Channel Bandwidth
Satellite Classification	Geolocation Quality	Antenna polarization
Year	Latitude	Antenna Temperature
Month	Longitude	Brightness Temperature
Day	Satellite Height	Noise-equivalent delta temperature while viewing cold target
Hour	Satellite Zenith Angle	Noise-equivalent delta temperature while viewing warm target
Minute	Satellite Azimuth	Channel-Level Quality Flags
Second	Solar Zenith	
Orbit number	Solar Azimuth	

OMPS Total Column BUFR Table Entries		
Satellite ID	Latitude	Aerosol contamination index
ID of Originating Center	Longitude	Sulfur dioxide index
Satellite Instrument	Satellite Zenith Angle	Snow cover
Year	Satellite Azimuth	Quality of pixel level retrieval
Month	Solar Zenith	Ozone total column quality flag
Day	Solar Azimuth	Column amount O3
Hour	Satellite Height	Ozone below cloud
Minute	Geolocation Quality	
Second	Cloud fraction	

VIIRS AOT BUFR Table Entries		
Satellite ID	Latitude	Retrieval Quality
ID of Originating Center	Longitude	Surface Type
Satellite Instrument	Satellite Zenith Angle	Aerosol Type (land)
Year	Satellite Azimuth	AOT Quality Flag
Month	Solar Zenith	Aerosol Angstrom Wavelength Exponent
Day	Solar Azimuth	Channel Wavelength
Hour	Satellite Height	Optical Depth
Minute	Geolocation Quality	
Second	VIIRS Geolocation Quality	

Variables in Global/Regional GVF GRIB2 file	
Latitudes of first/last grid point	Latitude direction increment
Longitude of first/last grid point	Longitude direction increment
Number of points along a parallel	Number of points along a meridian
Map projection	4km/1km GVF values

Product Quality Assurance

- All code development platforms are nearly identical to the production target platforms.
- Only the official releases of the NCEP BUFRLIB, GRIB2, and NetCDF4 libraries will be used in the software..
- The generated BUFR and GRIB2 files will be directed back into the Reformatting Toolkit to generate new NetCDF4 files, and compare to the source input files before distributing.
- All the BUFR files will maintain consistency with the heritage products.
- The contents of the original HDF5/NetCDF4 will be kept as exact as possible; the negative radiances will be stored in BUFR files.
- The BUFR and GRIB2 products, tables, and additional resources will be released early to allow for WMO approval and customer validation of products.