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Conclusions
• DBFN can be used for ocean DA despite the low accuracy of the backward integration.

• Use of scalar gains requires high spatial and temporal availability of data.

• In the case of sparse data, the PLS model builds complex functions that propagate the infor-
mation from the data to the non-observed variables and non-observed regions of the domain.

• DBFN results are at least comparable with 4DVar, with a much lower computational cost.

The DBFN converges to good initial condition estimates:

Figure 3: Example of model run: comparison between the true state (left) and identified state by
the DBFN (right).

Figure 4: Relative error of the SSH, U-velocity and Temperature

Figure 5: RMS of vertical zonal velocity and EOF error modes calculated using forecast from
day 200 to day 720.

Results
The errors in the initial condition decrease exponentialy during the iterative procedure for both
observed and non observed variables. The way they decrease depends on the gainfactorK and
the information content available from the observations. The smaller the number of observations
the bigger the number of iterations required to converge, although this does notmean that the
final states are the same, even if the observations are extracted froma model solution.

Figure 1: In color: evolution of the errors during the
Back and Forth iterations and during the forecast phase.
In black: evolution of the error for the control and direct
nudging experiments.

Figure 2: Relative errors on the ini-
tial condition with respect to the iter-
ations for the experiment assimilating
daily gridded SSH fields.

Partial Least Squares regression (PLS)
The PLS method was first introduced by Wold (1975) to address the problem of econometric
path modeling, and was subsequently adopted for regression problems in chemometric and spec-
trometric modeling. In the method description,X ∈ R

n×M is considered as the observed or
predictor variables andY ∈ R

n×N as the non-observed or response variables. In our notationn

is the sample size andM andN are respectively the size of the state space ofX andY . Besides,
X andY are centered and have the same units. The PLS regression features two steps: a dimen-
sion reduction step in which the predictors from matrixX are summarized in a small number of
linear combinations called “PLS components”. Then, these components are used as predictors
in the ordinary least-squares regression. The PLS as well as the principal component regression
can be seen as methods to construct a matrixT of p mutually orthogonal components defined as
linear combinations ofX:

T = XW,

whereT ∈ R
n×p is the matrix of new components, andW ∈ R

M×p is a weight matrix satisfying
a particular optimality criterium.
The columnsw1; . . . ; wp of W are calculated according to the following optimization problem:

wi = arg max
w

{cov(Xw, Y )2}

subject towT
i wi = 1 andwT

i XTXwj = 0 for j = 1, . . . , i − 1.
The PLS estimator̂BPLS is given by:

B̂PLS = W (WTXTXW )−1WTXTY.

An immediate consequence is that whenW = I the original least square solution is obtained.
The number of componentsp is chosen from cross-validation. This method requires a test of
the model with objects that were not used to build the model. The data set isdivided into two
contiguous blocks; one of them is used for training and the other to validate the model. Then
the number of components giving the best results in terms of mean residual error and estimator
variance is sought.

Diffusive Back and Forth Nudging algorithm
The BFN was first introduced by Auroux and Blum (2008) and consists in an iterative algorithm
which sequentially solves the forward model equations with a feedback term to the observations
and the backward model equations with the sign of the feedback term reversed. The initial condi-
tion of the backward integration is the final state obtained after integration ofthe forward nudging
equation. At the end of each iteration one obtains an estimate of the initial state of the system.
The iterations are carried out until convergence.
We used the Diffusive Back and Forth Nudging-DBFN (Auroux et al., 2011), designed totreat
the instabilities of the backward integration in dissipative systems. Inthe DBFN we keep the sign
of the diffusion, during the backward integration, consistent with the forward model and only the
non-diffusive physical model is solved backwards. This is of relevant interest in oceanography
because the non-diffusive part of the model is generally reversible. We assume that the time
continuous model satisfies dynamical equations of the form:

dX

dt
= F (X) + ν∆X, 0 < t < T, (1)

with initial conditionX(0) = x0, whereF denotes the nonlinear model operator without diffusive
terms,ν is the diffusion coefficient and∆ represents the diffusion operator. In the following we
will denote byH the observation operator, allowing one to compare the observationsXobs(t)
with the correspondingH(X(t)), the subspcriptk is the iteration index andK andK ′ are the
forward and backward gain matrices respectively. If we apply nudging toforward system (1) we
obtain:

∂Xk

∂t
= F (Xk) + ν∆Xk + K(Xobs − H(Xk)) (2a)

Xk(0) = X̃k−1(0), 0 < t < T, (2b)

while nudging applied to the backward system gives:

∂X̃k

∂t
= F (X̃k) − ν∆X̃k − K ′(Xobs − H(X̃k)) (3a)

X̃k(T ) = Xk(T ), T > t > 0. (3b)

Using the variable transformationt′ = T − t, we can write the backward model as:

∂X̃k

∂t′
= −F (X̃k) + ν∆X̃k + K ′(Xobs − H(X̃k)) X̃k(t′ = 0) = Xk(T ).

This equation shows that the backward equation can be solved with an initialcondition and the
same diffusion term as in the forward equation.
The convergence criterium we use in the following is given by the inequality:

‖Xk(t = 0) − Xk−1(t = 0)‖

‖Xk−1(t = 0)‖
≤ ε

whereε = 0.005 (based on sensitivity tests).

Summary
The Diffusive Back and Forth Nudging (DBFN) is an easy-to-implement iterative data assimi-
lation method based on the well-known Nudging method. It consists in a sequence of forward
and backward model integrations, within a given time window, both of them usinga feedback
term to the observations. Therefore in the DBFN, the Nudging asymptotic behavior is translated
into an infinite number of iterations within a bounded time domain. In this method, the back-
ward integration is carried out thanks to what is called backward model,which is basically the
forward model with reversed time step sign. To maintain numeral stability, the diffusion terms
also have their sign reversed, giving a diffusive character to the algorithm. In this presentation,
the DBFN performance to control a primitive equation ocean model is investigated. In this kind
of model, non-resolved scales are modelled by diffusion operators which dissipate energy that
cascades from large to small scales. Thus, in this article the DBFN approximations and their
consequences on the data assimilation system set-up are analysed. Our mainresult is that despite
the lack of accuracy of the backward model, the DBFN provides results that are comparable to
those produced by a 4Dvar implementation. The required conditions include the use of ashort
assimilation window (≃ 10 days) along with a reduced model diffusion and a Nudging gain able
to spread the observation information to the non-observed variables.
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