

Observation Impact in a Convective-Scale Localized Ensemble Transform Kalman Filter

Matthias Sommer¹, Martin Weissmann¹, and Andreas Rhodin²

¹Hans-Ertel-Centre for Weather Research, Data Assimilation Branch, Ludwig-Maximilians-Universität München, Germany ²Deutscher Wetterdienst, Offenbach, Germany

Background

- Knowledge about the impact of observations is crucial to refine and optimize the observing and data assimilation system
- The computational cost of the direct approach to observation impact with data denial experiments is however prohibitively high
- This motivated the development of the Adjoint Forecast Sensitivity to Observation (FSO) tools, which is now implemented at several weather centers

Goal

- Estimate the impact of observations (i.e. contribution to the reduction of forecast error) in the future regional ensemble data assimilation system of DWD (KENDA-COSMO)
- Demonstrate the feasibility of the ensemble observation impact estimate in a full NWP system, evaluate the accuracy and investigate limitations
- Perform sensitivity experiments in order to optimize efficiency and accuracy
- An adjoint model is not available for the DWD COSMO-DE system, but idealized studies show that ensemble methods can estimate such an impact at a very low computational cost (when the ensemble itself is computed anyway)

Method

References: Liu and Kalnay (QJRMS, 2008), Li et al. (QJRMS, 2010), Kalnay et al. (Tellus A, 2012), Sommer and Weissmann (submitted to QJRMS, 2013)

bservation impact of main observation types		
Data denial		Approximation
$\times 10^8$		$\times 10^8$

Sensitivity to localization

Varying horizontal localization _ x 10⁸

Varying vertical localization x 10⁸

—— 50% Obs. err.

- Localization in impact estimation can be chosen independently from the analysis localization
- In experiments with varying horizontal and vertical localization radii, only shifts but no qualitative changes in the impact estimation were observed
- The optimal configuration was found to be a static localization with the same localization radius as in the calculation of the analysis

Sensitivity to observation perturbations • Experiment with 1 × 10⁸ 1×10^8 perturbed v-wind DD DD (Perturbed obs.) observations --Approx --Approx. (Perturbed obs.) Impact reduction by perturbations in data denial Effect of perturbations correctly reproduced in approximation

Status and outlook

• The method of Kalnay et al. 2012 was applied to a experimental convective-scale data assimilation and

 Approximation allows for an efficient breakdown of total observation impact Disadvantageous contribution of v-wind component observation correctly attributed by approximation method

- Experiment with unrealistically small observation error (50%)
- Data denial (solid lines) shows reduced impact
- Suboptimal use correctly detected by approximation (dashed lines)
- -0.5 0 0.5 Approximated impact 1.5 • Histogram of individual observation impact values shows increased spread but...
- ... reduced impact in experiment with modified observation error, in agreement with data denial results

forecasting system

- Data denial and sensitivity experiments with 10 6-hourly forecast and assimilation cycles were performed
- In a comparison to data denial experiments, it is demonstrated that the approximation method can efficiently estimate the impact of different conventional observations on a 6h-forecast when averaged over 10 cycles
- The observed differences between approximation and data denial were not statistically significant
- The method was sensitive to perturbations in observation subgroups and suboptimal use of observations
- Best results were achieved with the localization length scale taken equal to the one used in computing the analysis
- In future studies, more extended periods and more complex observation types shall be investigated