(Extended) Kalman Filter

Brian Hunt

7 June 2013

Goals of Data Assimilation (DA)

- Estimate the state of a system based on both current and all past observations of the system, using a model for the system dynamics.
- Perform the estimation iteratively: compute the current estimate in terms of a recent past estimate.
- Ideally, quantify the uncertainty in the state estimate.

Terminology and Notation

- Forecast model: a known function M on a vector space of model states.
- Truth: an unknown sequence $\left\{x_{n}\right\}$ of model states to be estimated.
- Model error: $\delta_{n}=x_{n+1}-M\left(x_{n}\right)$.
- Observations: a sequence $\left\{y_{n}\right\}$ of vectors in observation space (may depend on n).
- Forward operator: a known function H_{n} from model space to observation space.
- Observation error: $\varepsilon_{n}=y_{n}-H_{n}\left(x_{n}\right)$.

When DA is not Necessary

- If the forward operator H_{n} is invertible and $\varepsilon_{n}=0$ then $x_{n}=H_{n}^{-1}\left(y_{n}\right)$.
- If H_{n} is invertible and the statistics of ε_{n} are known, then we can compute the pdf of x_{n} (but data assimilation can improve the estimate).
- Note: the pdf (probability density function) of x gives the relative likelihood of the possible values of x. The maximizer ("mode") of the pdf is the most likely value.

More Terminology

- Background ("first guess"): estimate x_{n}^{b} of the current model state x_{n} given past observations y_{1}, \ldots, y_{n-1}.
- Analysis: estimate x_{n}^{a} of x_{n} given current and past observations y_{1}, \ldots, y_{n}.
- A data assimilation cycle consists of:
- Analysis step: Determine analysis x_{n}^{a} from background x_{n}^{b} and observations y_{n}.
- Forecast step: Typically $x_{n+1}^{b}=M\left(x_{n}^{a}\right)$.

Remarks on the Analysis Step

- If the observation error ε_{n} is zero, we should seek x_{n}^{a} close to x_{n}^{b} such that $H_{n}\left(x_{n}^{a}\right)=y_{n}$.
- Otherwise, we should just make $H_{n}\left(x_{n}^{a}\right)$ closer to y_{n} than $H_{n}\left(x_{n}^{b}\right)$ is.
- How much closer depends on the relative uncertainties of the background estimate x_{b}^{n} and the observation y_{n}.
- The better we understand the uncertainties, the clearer it is how to do the analysis step.

Bayes' Rule

- Definition of conditional probability:

$$
\begin{aligned}
P(V \mid W) & =P(V \cap W) / P(W) \\
P(V \text { given } W) & =P(V \text { and } W) / P(W)
\end{aligned}
$$

- Then

$$
P(V \mid W) P(W)=P(V \cap W)=P(V) P(W \mid V)
$$

- Corollary:

$$
P(V \mid W)=P(V) P(W \mid V) / P(W)
$$

posterior $=$ prior \cdot likelihood $/$ normalization

Bayesian Data Assimilation

- Assume that the statistics of the model error δ_{n} and observation error ε_{n} are known.
- Theoretically, given an analysis pdf $p\left(x_{n-1} \mid y_{1}, \ldots, y_{n-1}\right)$, we can use the forecast model to determine a background ("prior") pdf $p\left(x_{n} \mid y_{1}, \ldots, y_{n-1}\right)$.
- The forward operator tells us $p\left(y_{n} \mid x_{n}\right)$.
- Bayes' rule tells us that the analysis ("posterior") pdf $p\left(x_{n} \mid y_{1}, \ldots, y_{n}\right)$ is proportional to $p\left(x_{n} \mid y_{1}, \ldots, y_{n-1}\right) p\left(y_{n} \mid x_{n}\right)$.

Advantages and Disadvantages

- Advantage: the analysis step is simple just multiply two functions.
- Disadvantage: the forecast step is generally unfeasible in practice.
- If x is high-dimensional, we can't numerically keep track of an arbitrary pdf for x - too much information!
- We need to make some simplifying assumptions.

Linearity and Gaussianity

- Assume that M and H_{n} are linear.
- Assume model and observation errors are Gaussian with known covariances and no time correlations: $\delta_{n} \sim N\left(0, Q_{n}\right)$ and $\varepsilon_{n} \sim N\left(0, R_{n}\right)$.
- Then in the analysis step, a Gaussian background pdf leads to a Gaussian analysis pdf.
- Gaussian input yields Gaussian output in the forecast step too.
- Let the background pdf have mean x_{n}^{b} and covariance P_{n}^{b}.

Bayesian DA with Gaussians

- The (unnormalized) background pdf is:

$$
\exp \left[-\left(x_{n}-x_{n}^{b}\right)^{T}\left(P_{n}^{b}\right)^{-1}\left(x_{n}-x_{n}^{b}\right) / 2\right]
$$

- The pdf of y_{n} given x_{n} is

$$
\exp \left[-\left(H_{n} x_{n}-y_{n}\right)^{T} R_{n}^{-1}\left(H_{n} x_{n}-y_{n}\right) / 2\right]
$$

- The analysis pdf is the $\exp \left(-J_{n} / 2\right)$ where:

$$
\begin{aligned}
J_{n}= & \left(x_{n}-x_{n}^{b}\right)^{T}\left(P_{n}^{b}\right)^{-1}\left(x_{n}-x_{n}^{b}\right) \\
& +\left(H_{n} x_{n}-y_{n}\right)^{T} R_{n}^{-1}\left(H_{n} x_{n}-y_{n}\right)
\end{aligned}
$$

- To find the mean and covariance of the analysis pdf, we want to write:

$$
J_{n}=\left(x_{n}-x_{n}^{a}\right)^{T}\left(P_{n}^{a}\right)^{-1}\left(x_{n}-x_{n}^{a}\right)+c
$$

The Kalman Filter

 [Kalman 1960]- After some linear algebra, the analysis mean x_{n}^{a} and covariance P_{n}^{a} are

$$
\begin{aligned}
x_{n}^{a} & =x_{n}^{b}+K_{n}\left(y_{n}-H_{n} x_{n}^{b}\right) \\
P_{n}^{a} & =\left[\left(P_{n}^{b}\right)^{-1}+H_{n}^{\top} R_{n}^{-1} H_{n}\right]^{-1} \\
& =\left[I+P_{n}^{b} H_{n}^{\top} R_{n}^{-1} H_{n}\right]^{-1} P_{n}^{b}
\end{aligned}
$$

where $K_{n}=P_{n}^{a} H_{n}^{\top} R_{n}^{-1}$ is the Kalman gain matrix.

- The forecast step is $x_{n+1}^{b}=M x_{n}^{a}$ and $P_{n+1}^{b}=M P_{n}^{b} M^{\top}+Q_{n}$

Observation Space Formulation

- After some further linear algebra, the Kalman filter analysis equations can be written

$$
\begin{aligned}
& K_{n}=P_{n}^{b} H_{n}^{T}\left[H_{n} P_{n}^{b} H_{n}^{T}+R_{n}\right]^{-1} \\
& x_{n}^{a}=x_{n}^{b}+K_{n}\left(y_{n}-H_{n} x_{n}^{b}\right) \\
& P_{n}^{a}=\left(I-K_{n} H_{n}\right) P_{n}^{b}
\end{aligned}
$$

- The size of the matrix that must be inverted is determined by the number of (current) observations, not by the number of model state variables.

Example

- Assume that $M=H_{n}=I$, that x is a scalar, and that $Q_{n}=0$ and $R_{n}=r>0$.
- We are making independent measurements y_{1}, y_{2}, \ldots of a constant-in-time quantity x.
- The analysis equations are:

$$
\begin{aligned}
x_{n}^{a} & =x_{n}^{b}+P_{n}^{a} r^{-1}\left(y_{n}-x_{n}^{b}\right) \\
\left(P_{n}^{a}\right)^{-1} & =\left(P_{n}^{b}\right)^{-1}+r^{-1}
\end{aligned}
$$

- Start with a uniform "prior" pdf: $\left(P_{1}^{b}\right)^{-1}=0$ and x_{1}^{b} arbitrary.
- Then by induction, $P_{n+1}^{b}=P_{n}^{a}=r / n$ and

$$
x_{n+1}^{b}=x_{n}^{a}=\left(y_{1}+\cdots+y_{n}\right) / n
$$

A Least Squares Formulation

- In terms of all the observations y_{1}, \ldots, y_{n}, what problem did we solve to estimate x_{n} ?
- Assume no model error ($\delta_{n}=0$).
- The likelihood of a model trajectory x_{1}, \ldots, x_{n} is $\exp \left(-J_{n} / 2\right)$ where:

$$
J_{n}=\sum_{i=1}^{n}\left(H_{i} x_{i}-y_{i}\right)^{T} R_{i}^{-1}\left(H_{i} x_{i}-y_{i}\right)
$$

- Problem: minimize the cost function $J_{n}\left(x_{1}, \ldots, x_{n}\right)$ subject to the constraints $x_{i+1}=M x_{i}$.

Kalman Filter Revisited

- The Kalman filter expresses the minimizer x_{n}^{a} of J_{n} in terms of the minimizer x_{n-1}^{a} of J_{n-1} as follows.
- It expresses J_{n-1} as a function of x_{n-1} only.
- It keeps track of an auxiliary matrix P_{n-1}^{a} that is the 2nd derivative (Hessian) of J_{n-1}.
- Assuming it has done so correctly at time $n-1$, the next slide explains why it does so at time n.

Kalman Filter Revisited

- If x_{n-1}^{a} minimizes J_{n-1} and P_{n-1}^{a} is its Hessian, then

$$
J_{n-1}=\left(x_{n-1}-x_{n-1}^{a}\right)^{T}\left(P_{n-1}^{a}\right)^{-1}\left(x_{n-1}-x_{n-1}^{a}\right)+c_{n-1}
$$

- Then substituting $x_{n}=M x_{n-1}, x_{n}^{b}=M x_{n-1}^{a}$, and $P_{n}^{b}=M P_{n-1}^{a} M^{\top}$ yields:

$$
J_{n-1}=\left(x_{n}-x_{n}^{b}\right)^{T}\left(P_{n}^{b}\right)^{-1}\left(x_{n}-x_{n}^{b}\right)+c_{n-1}
$$

- We get the same cost function as before:

$$
J_{n}=J_{n-1}+\left(H x_{n}-y_{n}\right)^{T} R_{n}^{-1}\left(H x_{n}-y_{n}\right)
$$

- The KF completes the square as before.

Nonlinear Least Squares

- Now let's eliminate the assumption that M and H_{i} are linear.
- As before, assume no model error and Gaussian observation errors.
- The maximum likelihood estimate for the true trajectory is the minimizer of:

$$
J_{n}=\sum_{i=1}^{n}\left(H_{i}\left(x_{i}\right)-y_{i}\right)^{T} R_{i}^{-1}\left(H_{i}\left(x_{i}\right)-y_{i}\right)
$$

subject to the constraints $x_{i+1}=M\left(x_{i}\right)$.

Approximate Solution Methods

- Use an approximate solution at time $n-1$ to find an approximate solution at time n.
- If we track covariances associated with our estimates, we can write:

$$
J_{n-1} \approx\left(x_{n-1}-x_{n-1}^{a}\right)^{T}\left(P_{n-1}^{a}\right)^{-1}\left(x_{n-1}-x_{n-1}^{a}\right)+c
$$

- As a further approximation, we can write:

$$
J_{n-1} \approx\left(x_{n}-x_{n}^{b}\right)^{T}\left(P_{n}^{b}\right)^{-1}\left(x_{n}-x_{n}^{b}\right)+c
$$

- It seems clear that x_{n}^{b} should be $M\left(x_{n-1}^{a}\right)$, but what choice of P_{n}^{b} is best?

Extended Kalman Filter

- Matching the second derivatives of the two approximate cost functions yields $P_{n}^{b}=(D M) P_{n-1}^{a}(D M)^{T}$ where $D M$ is the derivative of M at x_{n-1}^{a}.
- The remaining equations are like the Kalman filter (linearizing H_{n} near x_{n}^{b}).
- Advantage: The approximation error may be smaller than for other methods.
- Disadvantage: For a high-dimensional model, the covariance forecast is computationally expensive.

Extended KF (Square Root Form)

- If M is computed by solving a system of differential equations, then $D M$ is computed by solving the associated tangent linear model (TLM).
- If $P_{n-1}^{a}=X_{n-1}^{a}\left(X_{n-1}^{a}\right)^{T}$, then compute $X_{n}^{b}=(D M) X_{n-1}^{a}$, followed by $P_{n}^{b}=X_{n}^{b}\left(X_{n}^{b}\right)^{T}$.
- This is easier if X_{n-1}^{a} has (many) fewer columns than rows; the resulting covariance has reduced rank.
- The Kalman covariance update becomes

$$
X_{n}^{a}=X_{n}^{b}\left(H_{n} X_{n}^{b}\right)^{T}\left[H_{n} X_{n}^{b}\left(H_{n} X_{n}^{b}\right)^{T}+R_{n}\right]^{-1 / 2}
$$

Tangent Linear Model

- Suppose $x_{n}=x(n)$ where $d x / d t=F(x)$.
- Then for all solutions, $M(x(0))=x(1)$.
- Consider a family of solutions with $x_{\gamma}(0)=x_{0}+\gamma v$; then
$D M\left(x_{0}\right) v=\left.(\partial / \partial \gamma) x_{\gamma}(1)\right|_{\gamma=0}$.
- Let $v(t)=\left.(\partial / \partial \gamma) x_{\gamma}(t)\right|_{\gamma=0}$.
- Substituting $x_{\gamma}(t)$ into the ODE and differentiating w.r.t. γ yields

$$
d v / d t=D F\left(x_{0}(t)\right) v
$$

- Compute $v(1)$ with $v(0)=v$ to get $D M\left(x_{0}\right) v$.

Ensemble Kalman Filter

- Use an ensemble of model states whose mean and covariance are transformed according to the Kalman filter equations.
- Forecast each ensemble member separately.
- Advantage: Relatively easy to implement and the analysis step is computationally efficient.
- Disadvantage: Only represents uncertainty in a space whose dimension is bounded by the ensemble size (inherently reduced rank).

3D-Var

- Replace P_{n}^{b} with a time-independent background covariance matrix B, determined empirically.
- Numerically minimize the resulting cost function (allowing nonlinear H_{n}).
- Advantage: The covariance B and associated matrices ($B^{1 / 2}$ is used in the analysis) only need to be computed once.
- Disadvantage: Ignores time dependence of background uncertainty, which can vary considerably.

(Strong Constraint) 4D-Var [le Dimet \& Talagrand 1985]

- Numerically minimize the cost function

$$
\begin{aligned}
J_{n}= & \left(x_{n-p}-x_{n-p}^{b}\right)^{\top} B^{-1}\left(x_{n-p}-x_{n-p}^{b}\right) \\
& +\sum_{i=n-p}^{n}\left(H_{i}\left(x_{i}\right)-y_{i}\right)^{\top} R_{i}^{-1}\left(H_{i}\left(x_{i}\right)-y_{i}\right)
\end{aligned}
$$

subject to the constraints $x_{i+1}=M\left(x_{i}\right)$.

- Advantage: Accuracy, especially as p increases.
- Disadvantage: Difficult to implement and computationally expensive.

