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Goals of Data Assimilation (DA)

• Estimate the state of a system based on
both current and all past observations of the
system, using a model for the system
dynamics.

• Perform the estimation iteratively: compute
the current estimate in terms of a recent
past estimate.

• Ideally, quantify the uncertainty in the state
estimate.



Terminology and Notation

• Forecast model: a known function M on a
vector space of model states.

• Truth: an unknown sequence {xn} of model
states to be estimated.

• Model error: δn = xn+1 −M(xn).
• Observations: a sequence {yn} of vectors

in observation space (may depend on n).
• Forward operator: a known function Hn from

model space to observation space.
• Observation error: εn = yn − Hn(xn).



When DA is not Necessary

• If the forward operator Hn is invertible and
εn = 0 then xn = H−1

n (yn).
• If Hn is invertible and the statistics of εn are

known, then we can compute the pdf of xn
(but data assimilation can improve the
estimate).

• Note: the pdf (probability density function)
of x gives the relative likelihood of the
possible values of x . The maximizer
(“mode”) of the pdf is the most likely value.



More Terminology

• Background (“first guess”): estimate xb
n of

the current model state xn given past
observations y1, . . . , yn−1.

• Analysis: estimate xa
n of xn given current

and past observations y1, . . . , yn.
• A data assimilation cycle consists of:
• Analysis step: Determine analysis xa

n from
background xb

n and observations yn.
• Forecast step: Typically xb

n+1 = M(xa
n ).



Remarks on the Analysis Step

• If the observation error εn is zero, we should
seek xa

n close to xb
n such that Hn(xa

n ) = yn.
• Otherwise, we should just make Hn(xa

n )
closer to yn than Hn(xb

n ) is.
• How much closer depends on the relative

uncertainties of the background estimate xn
b

and the observation yn.
• The better we understand the uncertainties,

the clearer it is how to do the analysis step.



Bayes’ Rule
• Definition of conditional probability:

P(V |W ) = P(V ∩W )/P(W )

P(V given W ) = P(V and W )/P(W )

• Then

P(V |W )P(W ) = P(V ∩W ) = P(V )P(W |V ).

• Corollary:

P(V |W ) = P(V )P(W |V )/P(W )

posterior = prior · likelihood/normalization



Bayesian Data Assimilation

• Assume that the statistics of the model
error δn and observation error εn are known.

• Theoretically, given an analysis pdf
p(xn−1|y1, . . . , yn−1), we can use the
forecast model to determine a background
(“prior”) pdf p(xn|y1, . . . , yn−1).

• The forward operator tells us p(yn|xn).
• Bayes’ rule tells us that the analysis

(“posterior”) pdf p(xn|y1, . . . , yn) is
proportional to p(xn|y1, . . . , yn−1)p(yn|xn).



Advantages and Disadvantages

• Advantage: the analysis step is simple –
just multiply two functions.

• Disadvantage: the forecast step is generally
unfeasible in practice.

• If x is high-dimensional, we can’t
numerically keep track of an arbitrary pdf for
x – too much information!

• We need to make some simplifying
assumptions.



Linearity and Gaussianity
• Assume that M and Hn are linear.
• Assume model and observation errors are

Gaussian with known covariances and no
time correlations: δn ∼ N(0,Qn) and
εn ∼ N(0,Rn).

• Then in the analysis step, a Gaussian
background pdf leads to a Gaussian
analysis pdf.

• Gaussian input yields Gaussian output in
the forecast step too.

• Let the background pdf have mean xb
n and

covariance Pb
n .



Bayesian DA with Gaussians
• The (unnormalized) background pdf is:

exp[−(xn − xb
n )

T (Pb
n )
−1(xn − xb

n )/2]
• The pdf of yn given xn is

exp[−(Hnxn − yn)
T R−1

n (Hnxn − yn)/2]
• The analysis pdf is the exp(−Jn/2) where:

Jn =(xn − xb
n )

T (Pb
n )
−1(xn − xb

n )

+ (Hnxn − yn)
T R−1

n (Hnxn − yn)

• To find the mean and covariance of the
analysis pdf, we want to write:

Jn = (xn − xa
n )

T (Pa
n)
−1(xn − xa

n ) + c



The Kalman Filter
[Kalman 1960]

• After some linear algebra, the analysis
mean xa

n and covariance Pa
n are

xa
n = xb

n + Kn(yn − Hnxb
n )

Pa
n = [(Pb

n )
−1 + HT

n R−1
n Hn]

−1

= [I + Pb
n HT

n R−1
n Hn]

−1Pb
n

where Kn = Pa
nHT

n R−1
n is the Kalman gain

matrix.
• The forecast step is xb

n+1 = Mxa
n and

Pb
n+1 = MPb

n MT + Qn



Observation Space Formulation
• After some further linear algebra, the

Kalman filter analysis equations can be
written

Kn =Pb
n HT

n [HnPb
n HT

n + Rn]
−1

xa
n =xb

n + Kn(yn − Hnxb
n )

Pa
n =(I − KnHn)Pb

n

• The size of the matrix that must be inverted
is determined by the number of (current)
observations, not by the number of model
state variables.



Example
• Assume that M = Hn = I, that x is a scalar,

and that Qn = 0 and Rn = r > 0.
• We are making independent measurements

y1, y2, . . . of a constant-in-time quantity x .
• The analysis equations are:

xa
n =xb

n + Pa
n r−1(yn − xb

n )

(Pa
n)
−1 =(Pb

n )
−1 + r−1

• Start with a uniform “prior” pdf: (Pb
1 )
−1 = 0

and xb
1 arbitrary.

• Then by induction, Pb
n+1 = Pa

n = r/n and
xb

n+1 = xa
n = (y1 + · · ·+ yn)/n.



A Least Squares Formulation
• In terms of all the observations y1, . . . , yn,

what problem did we solve to estimate xn?
• Assume no model error (δn = 0).
• The likelihood of a model trajectory

x1, . . . , xn is exp(−Jn/2) where:

Jn =
n∑

i=1

(Hixi − yi)
T R−1

i (Hixi − yi)

• Problem: minimize the cost function
Jn(x1, . . . , xn) subject to the constraints
xi+1 = Mxi .



Kalman Filter Revisited

• The Kalman filter expresses the minimizer
xa

n of Jn in terms of the minimizer xa
n−1 of

Jn−1 as follows.
• It expresses Jn−1 as a function of xn−1 only.
• It keeps track of an auxiliary matrix Pa

n−1
that is the 2nd derivative (Hessian) of Jn−1.

• Assuming it has done so correctly at time
n − 1, the next slide explains why it does so
at time n.



Kalman Filter Revisited
• If xa

n−1 minimizes Jn−1 and Pa
n−1 is its

Hessian, then

Jn−1 = (xn−1−xa
n−1)

T (Pa
n−1)

−1(xn−1−xa
n−1)+cn−1

• Then substituting xn = Mxn−1, xb
n = Mxa

n−1,
and Pb

n = MPa
n−1MT yields:

Jn−1 = (xn − xb
n )

T (Pb
n )
−1(xn − xb

n ) + cn−1

• We get the same cost function as before:

Jn = Jn−1 + (Hxn − yn)
T R−1

n (Hxn − yn)

• The KF completes the square as before.



Nonlinear Least Squares

• Now let’s eliminate the assumption that M
and Hi are linear.

• As before, assume no model error and
Gaussian observation errors.

• The maximum likelihood estimate for the
true trajectory is the minimizer of:

Jn =
n∑

i=1

(Hi(xi)− yi)
T R−1

i (Hi(xi)− yi)

subject to the constraints xi+1 = M(xi).



Approximate Solution Methods

• Use an approximate solution at time n − 1
to find an approximate solution at time n.

• If we track covariances associated with our
estimates, we can write:

Jn−1 ≈ (xn−1−xa
n−1)

T (Pa
n−1)

−1(xn−1−xa
n−1)+c

• As a further approximation, we can write:

Jn−1 ≈ (xn − xb
n )

T (Pb
n )
−1(xn − xb

n ) + c

• It seems clear that xb
n should be M(xa

n−1),
but what choice of Pb

n is best?



Extended Kalman Filter
• Matching the second derivatives of the two

approximate cost functions yields
Pb

n = (DM)Pa
n−1(DM)T where DM is the

derivative of M at xa
n−1.

• The remaining equations are like the
Kalman filter (linearizing Hn near xb

n ).
• Advantage: The approximation error may

be smaller than for other methods.
• Disadvantage: For a high-dimensional

model, the covariance forecast is
computationally expensive.



Extended KF (Square Root Form)
• If M is computed by solving a system of

differential equations, then DM is computed
by solving the associated tangent linear
model (TLM).

• If Pa
n−1 = X a

n−1(X
a
n−1)

T , then compute
X b

n = (DM)X a
n−1, followed by Pb

n = X b
n (X b

n )
T .

• This is easier if X a
n−1 has (many) fewer

columns than rows; the resulting covariance
has reduced rank.

• The Kalman covariance update becomes

X a
n = X b

n (HnX b
n )

T [HnX b
n (HnX b

n )
T + Rn]

−1/2.



Tangent Linear Model
• Suppose xn = x(n) where dx/dt = F (x).
• Then for all solutions, M(x(0)) = x(1).
• Consider a family of solutions with

xγ(0) = x0 + γv ; then
DM(x0)v = (∂/∂γ)xγ(1)|γ=0.

• Let v(t) = (∂/∂γ)xγ(t)|γ=0.
• Substituting xγ(t) into the ODE and

differentiating w.r.t. γ yields

dv/dt = DF (x0(t))v

• Compute v(1) with v(0) = v to get
DM(x0)v .



Ensemble Kalman Filter
• Use an ensemble of model states whose

mean and covariance are transformed
according to the Kalman filter equations.

• Forecast each ensemble member
separately.

• Advantage: Relatively easy to implement
and the analysis step is computationally
efficient.

• Disadvantage: Only represents uncertainty
in a space whose dimension is bounded by
the ensemble size (inherently reduced
rank).



3D-Var
• Replace Pb

n with a time-independent
background covariance matrix B,
determined empirically.

• Numerically minimize the resulting cost
function (allowing nonlinear Hn).

• Advantage: The covariance B and
associated matrices (B1/2 is used in the
analysis) only need to be computed once.

• Disadvantage: Ignores time dependence of
background uncertainty, which can vary
considerably.



(Strong Constraint) 4D-Var
[le Dimet & Talagrand 1985]

• Numerically minimize the cost function

Jn =(xn−p − xb
n−p)

T B−1(xn−p − xb
n−p)

+
n∑

i=n−p

(Hi(xi)− yi)
T R−1

i (Hi(xi)− yi)

subject to the constraints xi+1 = M(xi).
• Advantage: Accuracy, especially as p

increases.
• Disadvantage: Difficult to implement and

computationally expensive.


