(Extended) Kalman Filter

Brian Hunt

7 June 2013

Goals of Data Assimilation (DA)

- Estimate the state of a system based on both current and all past observations of the system, using a model for the system dynamics.
- Perform the estimation iteratively: compute the current estimate in terms of a recent past estimate.
- Ideally, quantify the uncertainty in the state estimate.

Terminology and Notation

- Forecast model: a known function *M* on a vector space of model states.
- Truth: an unknown sequence {*x_n*} of model states to be estimated.
- Model error: $\delta_n = x_{n+1} M(x_n)$.
- Observations: a sequence {y_n} of vectors in observation space (may depend on n).
- Forward operator: a known function *H_n* from model space to observation space.
- Observation error: $\varepsilon_n = y_n H_n(x_n)$.

When DA is not Necessary

- If the forward operator H_n is invertible and $\varepsilon_n = 0$ then $x_n = H_n^{-1}(y_n)$.
- If *H_n* is invertible and the statistics of ε_n are known, then we can compute the pdf of *x_n* (but data assimilation can improve the estimate).
- Note: the pdf (probability density function) of x gives the relative likelihood of the possible values of x. The maximizer ("mode") of the pdf is the most likely value.

More Terminology

- Background ("first guess"): estimate x^b_n of the current model state x_n given past observations y₁,..., y_{n-1}.
- Analysis: estimate x_n^a of x_n given current and past observations y_1, \ldots, y_n .
- A data assimilation cycle consists of:
- Analysis step: Determine analysis x^a_n from background x^b_n and observations y_n.
- Forecast step: Typically $x_{n+1}^b = M(x_n^a)$.

Remarks on the Analysis Step

- If the observation error ε_n is zero, we should seek x_n^a close to x_n^b such that H_n(x_n^a) = y_n.
- Otherwise, we should just make H_n(x^a_n) closer to y_n than H_n(x^b_n) is.
- How much closer depends on the relative uncertainties of the background estimate xⁿ_b and the observation y_n.
- The better we understand the uncertainties, the clearer it is how to do the analysis step.

Bayes' Rule

• Definition of conditional probability:

 $P(V|W) = P(V \cap W) / P(W)$ P(V given W) = P(V and W) / P(W)

Then

 $P(V|W)P(W) = P(V \cap W) = P(V)P(W|V).$

• Corollary:

P(V|W) = P(V)P(W|V)/P(W)posterior = prior · likelihood/normalization

Bayesian Data Assimilation

- Assume that the statistics of the model error δ_n and observation error ε_n are known.
- Theoretically, given an analysis pdf p(x_{n-1}|y₁,..., y_{n-1}), we can use the forecast model to determine a background ("prior") pdf p(x_n|y₁,..., y_{n-1}).
- The forward operator tells us $p(y_n|x_n)$.
- Bayes' rule tells us that the analysis ("posterior") pdf p(x_n|y₁,..., y_n) is proportional to p(x_n|y₁,..., y_{n-1})p(y_n|x_n).

Advantages and Disadvantages

- Advantage: the analysis step is simple just multiply two functions.
- Disadvantage: the forecast step is generally unfeasible in practice.
- If x is high-dimensional, we can't numerically keep track of an arbitrary pdf for x – too much information!
- We need to make some simplifying assumptions.

Linearity and Gaussianity

- Assume that M and H_n are linear.
- Assume model and observation errors are Gaussian with known covariances and no time correlations: δ_n ~ N(0, Q_n) and ε_n ~ N(0, R_n).
- Then in the analysis step, a Gaussian background pdf leads to a Gaussian analysis pdf.
- Gaussian input yields Gaussian output in the forecast step too.
- Let the background pdf have mean x^b_n and covariance P^b_n.

Bayesian DA with Gaussians The (unnormalized) background pdf is: $\exp[-(x_n - x_n^b)^T (P_n^b)^{-1} (x_n - x_n^b)/2]$ • The pdf of y_n given x_n is $\exp[-(H_n x_n - y_n)^T R_n^{-1} (H_n x_n - y_n)/2]$ • The analysis pdf is the $\exp(-J_n/2)$ where: $J_n = (x_n - x_n^b)^T (P_n^b)^{-1} (x_n - x_n^b)$ $+(H_{n}x_{n}-Y_{n})^{T}R_{n}^{-1}(H_{n}x_{n}-Y_{n})$

• To find the mean and covariance of the analysis pdf, we want to write:

 $J_n = (x_n - x_n^a)^T (P_n^a)^{-1} (x_n - x_n^a) + c$

The Kalman Filter [Kalman 1960]

 After some linear algebra, the analysis mean x^a_n and covariance P^a_n are

$$\begin{aligned} x_n^a &= x_n^b + K_n (y_n - H_n x_n^b) \\ P_n^a &= [(P_n^b)^{-1} + H_n^T R_n^{-1} H_n]^{-1} \\ &= [I + P_n^b H_n^T R_n^{-1} H_n]^{-1} P_n^b \end{aligned}$$

where $K_n = P_n^a H_n^T R_n^{-1}$ is the Kalman gain matrix.

• The forecast step is $x_{n+1}^b = Mx_n^a$ and $P_{n+1}^b = MP_n^bM^T + Q_n$

Observation Space Formulation

 After some further linear algebra, the Kalman filter analysis equations can be written

$$K_n = P_n^b H_n^T [H_n P_n^b H_n^T + R_n]^{-1}$$
$$x_n^a = x_n^b + K_n (y_n - H_n x_n^b)$$
$$P_n^a = (I - K_n H_n) P_n^b$$

 The size of the matrix that must be inverted is determined by the number of (current) observations, not by the number of model state variables.

Example

- Assume that $M = H_n = I$, that x is a scalar, and that $Q_n = 0$ and $R_n = r > 0$.
- We are making independent measurements y₁, y₂, ... of a constant-in-time quantity *x*.
- The analysis equations are:

$$x_n^a = x_n^b + P_n^a r^{-1} (y_n - x_n^b)$$

 $P_n^a)^{-1} = (P_n^b)^{-1} + r^{-1}$

- Start with a uniform "prior" pdf: $(P_1^b)^{-1} = 0$ and x_1^b arbitrary.
- Then by induction, $P_{n+1}^b = P_n^a = r/n$ and $x_{n+1}^b = x_n^a = (y_1 + \dots + y_n)/n$.

A Least Squares Formulation

- In terms of all the observations y₁,..., y_n, what problem did we solve to estimate x_n?
- Assume no model error ($\delta_n = 0$).
- The likelihood of a model trajectory x_1, \ldots, x_n is $\exp(-J_n/2)$ where:

$$J_n = \sum_{i=1}^n (H_i x_i - y_i)^T R_i^{-1} (H_i x_i - y_i)$$

• Problem: minimize the cost function $J_n(x_1, \ldots, x_n)$ subject to the constraints $x_{i+1} = Mx_i$.

Kalman Filter Revisited

- The Kalman filter expresses the minimizer x_n^a of J_n in terms of the minimizer x_{n-1}^a of J_{n-1} as follows.
- It expresses J_{n-1} as a function of x_{n-1} only.
- It keeps track of an auxiliary matrix P_{n-1}^a that is the 2nd derivative (Hessian) of J_{n-1} .
- Assuming it has done so correctly at time n-1, the next slide explains why it does so at time n.

Kalman Filter Revisited

• If x_{n-1}^a minimizes J_{n-1} and P_{n-1}^a is its Hessian, then

 $J_{n-1} = (x_{n-1} - x_{n-1}^{a})^{T} (P_{n-1}^{a})^{-1} (x_{n-1} - x_{n-1}^{a}) + c_{n-1}$

• Then substituting $x_n = Mx_{n-1}$, $x_n^b = Mx_{n-1}^a$, and $P_n^b = MP_{n-1}^a M^T$ yields:

 $J_{n-1} = (x_n - x_n^b)^T (P_n^b)^{-1} (x_n - x_n^b) + c_{n-1}$

- We get the same cost function as before: $J_n = J_{n-1} + (Hx_n - y_n)^T R_n^{-1} (Hx_n - y_n)$
- The KF completes the square as before.

Nonlinear Least Squares

- Now let's eliminate the assumption that *M* and *H_i* are linear.
- As before, assume no model error and Gaussian observation errors.
- The maximum likelihood estimate for the true trajectory is the minimizer of:

$$J_n = \sum_{i=1}^n (H_i(x_i) - y_i)^T R_i^{-1} (H_i(x_i) - y_i)$$

subject to the constraints $x_{i+1} = M(x_i)$.

Approximate Solution Methods

- Use an approximate solution at time n 1 to find an approximate solution at time n.
- If we track covariances associated with our estimates, we can write:

 $J_{n-1} \approx (x_{n-1} - x_{n-1}^{a})^{T} (P_{n-1}^{a})^{-1} (x_{n-1} - x_{n-1}^{a}) + c$

- As a further approximation, we can write: $J_{n-1} \approx (x_n - x_n^b)^T (P_n^b)^{-1} (x_n - x_n^b) + c$
- It seems clear that x^b_n should be M(x^a_{n-1}), but what choice of P^b_n is best?

Extended Kalman Filter

- Matching the second derivatives of the two approximate cost functions yields $P_n^b = (DM)P_{n-1}^a(DM)^T$ where DM is the derivative of M at x_{n-1}^a .
- The remaining equations are like the Kalman filter (linearizing *H_n* near *x_n^b*).
- Advantage: The approximation error may be smaller than for other methods.
- Disadvantage: For a high-dimensional model, the covariance forecast is computationally expensive.

Extended KF (Square Root Form)

- If *M* is computed by solving a system of differential equations, then *DM* is computed by solving the associated tangent linear model (TLM).
- If $P_{n-1}^a = X_{n-1}^a (X_{n-1}^a)^T$, then compute $X_n^b = (DM)X_{n-1}^a$, followed by $P_n^b = X_n^b (X_n^b)^T$.
- This is easier if X_{n-1}^a has (many) fewer columns than rows; the resulting covariance has reduced rank.
- The Kalman covariance update becomes $X_n^a = X_n^b (H_n X_n^b)^T [H_n X_n^b (H_n X_n^b)^T + R_n]^{-1/2}.$

Tangent Linear Model

- Suppose $x_n = x(n)$ where dx/dt = F(x).
- Then for all solutions, M(x(0)) = x(1).
- Consider a family of solutions with $x_{\gamma}(0) = x_0 + \gamma v$; then $DM(x_0)v = (\partial/\partial\gamma)x_{\gamma}(1)|_{\gamma=0}$.
- Let $v(t) = (\partial/\partial\gamma)x_{\gamma}(t)|_{\gamma=0}$.
- Substituting x_γ(t) into the ODE and differentiating w.r.t. γ yields

 $dv/dt = DF(x_0(t))v$

• Compute v(1) with v(0) = v to get $DM(x_0)v$.

Ensemble Kalman Filter

- Use an ensemble of model states whose mean and covariance are transformed according to the Kalman filter equations.
- Forecast each ensemble member separately.
- Advantage: Relatively easy to implement and the analysis step is computationally efficient.
- Disadvantage: Only represents uncertainty in a space whose dimension is bounded by the ensemble size (inherently reduced rank).

3D-Var

- Replace P_n^b with a time-independent background covariance matrix B, determined empirically.
- Numerically minimize the resulting cost function (allowing nonlinear *H_n*).
- Advantage: The covariance B and associated matrices (B^{1/2} is used in the analysis) only need to be computed once.
- Disadvantage: Ignores time dependence of background uncertainty, which can vary considerably.

(Strong Constraint) 4D-Var [le Dimet & Talagrand 1985]

Numerically minimize the cost function

$$J_{n} = (x_{n-p} - x_{n-p}^{b})^{T} B^{-1} (x_{n-p} - x_{n-p}^{b}) \\ + \sum_{i=n-p}^{n} (H_{i}(x_{i}) - y_{i})^{T} R_{i}^{-1} (H_{i}(x_{i}) - y_{i})$$

subject to the constraints $x_{i+1} = M(x_i)$.

- Advantage: Accuracy, especially as *p* increases.
- Disadvantage: Difficult to implement and computationally expensive.