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◮ Our goal is to develop efficient algorithms for filtering and
prediction of moisture coupled tropical waves.

◮ By filtering, we mean a recursive algorithm for state
estimation based on partial observations.

◮ Practically, filtering proceeds as follows:
Analysis: Given discrete-time data vn, apply Bayes’ theorem
to obtain:

p(un|v1,...,n) ∝ p(un|v1,...,n−1)p(vn|un).
◮ Forecast: compute a prior distribution.

p(un|v1,...,n) f−→ p(un+1|v1,...,n)
◮ When Gaussianity and linearity are assumed, one obtains the

famous linear Kalman filter.
◮ For high dimensional nonlinear dynamics with multiscale

structure, the computational burden is in the forecast step.
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Why the tropical waves?

◮ A recent article in the bulletin of the World Meteorological
Organization [Moncrieff et al 2007] reported that the
difficulties in improving weather and climate predictions from
days to years is essentially due to the limited representation of
the tropical convection and its multiscale organization in the
contemporary convection parameterization.

◮ We have a relatively accurate prediction for midlatitude
weather dynamics, what so difficult about the tropics?

midlatitude tropics

geostrophic balance coriolis vanishes, convection
Rossby and inertio-gravity waves Kelvin, MRG, ER, IG waves

denser measurement sparse velocity measurements



Tropical waves multiscale structure

Period of 2000-2001 [Zhang 2005]

Longitude-time plots of daily (a) zonal
wind (m/s) at roughly 1.5 km above the
sea level from the NCEP/NCAR
reanalysis and (b) precipitation
(mm/day) from the GCPC combined
data set.

The MJO (Madden-Julian Oscillation)
signal propagates eastward with phase
speed of roughly 5m/s with periods of
about 1 month (white solid line). The
convectively coupled Kelvin waves
(black dashes) which propagates
eastward (15m/s) with shorter periods
(5-10 days) and westward propagating
(white arrows) waves (with periods less
than 5 days) that are associated with
Rossby or mixed-Rossby gravity waves.



Wheeler-Kiladis space-time spectra

Multi-scale clouds and waves in the tropics

Observations General Circulation Model (GCM)

from Lin et al. (2006)

MJO & CCEWs are not currently part of GCM’s intrinsic variability

−→ Implications for MJO prediction
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Our contribution in term of data assimilation

◮ Instead of focusing on developing the analysis step (e.g.,
various EnKFs, variational based approaches, etc), we study
the effect of model errors in the prior forecasting step in the
filtering scheme.

◮ In particular, we ask whether we can obtain accurate filtering
skill by committing judicious model errors with a surrogate
prior statistics P̃ . We approximate the following filtering
problem

P(u|v) ∝ P(u)P(v |u)
with

P(u, λ|v) ∝ P̃(u, λ)P(v |u, λ).
◮ The main questions are: How to choose P̃? How to

parameterize λ? How do you justify your choice of P̃ are
optimal? We need a reasonable test model for the tropical
atmospheric dynamics, need to choose P̃ that is data-driven.



Three-cloud model [Khouider and Majda 2007, 2008]

Three-cloud mechamism: (1) lower
troposphere moistening through cumulus
clouds triggers the (2) deep convection
heating, and finally (3) trailing decks of
stratiform precipitation.

The three-cloud mechanism has been
observed on the eastward propagating
convectively coupled Kelvin waves
[Wheeler and Kiladis 2005], on the
westward two-days waves [Haertl and
Kiladis 2004], and on the MJO [Kiladis
2005, Dunkerton and Crum 1995].



Basic equations [KM 2007, 2008]

Two SWE obtained by a Galerkin projection of hydrostatic
primitive eqn with constrant buoyancy frequency onto the first two
baroclinic modes:

∂vj
∂t

+ Ū · ∇vj + βyv⊥j − θj = −Cdu0vj −
1

τw
vj , j = 1, 2

∂θ1
∂t

+ Ū · ∇θ1 − div v1 = P + S1,

∂θ2
∂t

+ Ū · ∇θ2 −
1

4
div v2 = −Hs + Hc + S2.

Here, the total velocity and potential temperature is given by

V ≈ Ū+ G (z)v1 + G (2z)v2,

w ≈ −HT

π

[

G ′(z)div v1 +
1

2
G ′(2z)div v2

]

,

Θ ≈ z + G ′(z)θ1 + 2G ′(2z)θ2

where G (z) =
√
2 cos(πz/HT ) and G ′(z) =

√
2 sin(πz/HT ).



Convective parameterization [KM 2007, 2008]

The 2-layer SWE is coupled with

∂θeb

∂t
=

1

hb
(E − D) =

1

τe
(θ

∗

eb − θeb) −
1

hb
D,

∂q

∂t
+ Ū · ∇q + div (v1q + α̃v2q) + Q̃div (v1 + λ̃v2) = −

2
√

2

π
P +

1

HT

D.

∂Hs

∂t
=

1

τs
(αsP − Hs )

∂Hc

∂t
=

1

τc
(αc

Λ − Λ∗

1 − Λ∗

D

HT

− Hc ),

P =
1 − Λ

1 − Λ∗
P0 =

1 − Λ

1 − Λ∗

1

τconv

[

a1θeb + a2(q − q̂) − a0(θ1 + γ2θ2)
]+

D = ΛD0 = Λ
m0

P̄

[

P̄ + µ2(Hs − Hc )
]+

(θeb − θem)

Λ =











1 if θeb − θem > θ+

A(θeb − θem) + B if θ− ≤ θeb − θem ≤ θ+

Λ∗ if θeb − θem < θ−.

θem ≈ q +
2
√

2

π
(θ1 + α2θ2).

Key point: there is a parameter Λ that nonlinearly switches the
dynamics to moistening the lower troposphere and inhibit the deep
convection heating episodes.



Simple multicloud model with MJO-like behavior:
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An MJO-analogue parameter regime

[Majda-Stechmann-Khouider 2007]
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An MJO-analogue parameter regime

[Majda-Stechmann-Khouider 2007] Velocity

fields and heating contour.
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How to choose P̃(u, λ) and how to parameterize λ?

Given a dynamical system,

du

dt
= Fu +N (u),

on a periodic domain (for simplicity). Following turbulent closure
approaches [DelSole 2004, Majda and Timofeyev 2004, etc], we
consider the following approximation:

N (u) →
J−1
∑

k=0

(

−λkuk + σkẆk

)

e2πikj/J ,

then parameterizes λk , σk by fitting to the exact equilibrium
statistical solutions of the linear reduced stochastic models, such as
to the energy spectrum and correlation time [see MH2012, Ch 12].



Mean Stochastic Model for the three-cloud model

In our case, Ψ = (u1, u2, θ1, θ2, θeb, q,Hs ,Hc )
T ∈ R

8. Consider the
linearized multicloud model about the RCE [KM2007]:

∂Ψ′

∂t
= P(∂x )Ψ

′,

where Ψ′ denotes the perturbation field about the RCE and P
denotes the linearized differential operator of the multicloud model
at RCE.
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In our case, Ψ = (u1, u2, θ1, θ2, θeb, q,Hs ,Hc )
T ∈ R

8. Consider the
linearized multicloud model about the RCE [KM2007]:

∂Ψ′

∂t
= P(∂x )Ψ

′,

where Ψ′ denotes the perturbation field about the RCE and P
denotes the linearized differential operator of the multicloud model
at RCE.
Consider a spatial discretization about ∆x = 2000km such that

dΨ̂k

dt
= iω(k)Ψ̂k , |k | ≤ M/2 = 10.

Consider eigenvalue decomposition iω(k)Zk = ZkΛk such that the
MSM is given by the following diagonal 8× 8 system of SDEs:

dΦ̂k =
[

(−Γk + iΩk)Φ̂k + fk

]

dt +ΣkdWk ,

where Φ̂k = Z−1
k Ψ̂k .
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Parameterization for the MSM

We’d like to parameterize

dΦ̂k =
[

(−Γk + iΩk)Φ̂k + fk

]

dt +ΣkdWk ,

where Φ̂k = Z−1
k Ψ̂k . Apply regression fitting to the climatological

statistics (in our work, we compute this statistics from solutions of
the full multiscloud model, resolved at 40km grid points).
Dry and Cold model: To mimic the approach in [Zagar 2004], we
use only fitting the model to (u1, u2, θ1, θ2, θeb). Mathematically,
we replace the transformation in

Φ̂dc
k = Z−1

k

[

I5×5 0

0 0

]

Ψ̂k .

Moist and Cold model: We also consider fitting the model to
(u1, u2, θ1, θ2, θeb, q).



Observation networks

We define our observation model as follows:

GΨo
j ,m = GΨj ,m + Gsj ,m, σj ,m ∼ N (0,Ro),

at every xj = 2000km and consider various observation networks:

◮ Surface Observations (SO): wind, potential temperature at
surface height zs = 100m and θeb.

◮ Surface Observations + Middle Troposphere Temperature
(SO+MT): add temperature at 8km.

◮ Surface Observations + Middle Troposphere Temperature &
Velocity (SO+MTV): add velocity at 8km.

◮ Complete Observations (CO).



Fourier Domain Kalman Filter

Our discrete-time Kalman filtering problem with MSM as the prior
model is defined on each horizontal wavenumber k :

Ψ̂k,m = Fk(∆t)Ψ̂k,m−1 + gk,m + ηk,m,

GΨ̂o
k,m = GΨ̂k,m +Gσ̂k,m,

where

σ̂k,m ∼ N (0,Ro/M)

Fk(t) = Zk exp
(

(−Γk + iΩk)t
)

Z−1
k ,

gk,m = −(I−Fk(tm))(−Γk + iΩk)
−1fk ,

Qk =
1

2
ZkΣ

2
kΓ

−1
k (I− |Fk(∆t)|2)Z∗

k .



Fourier Domain Kalman Filter

Applying the standard Kalman filter formula, we obtain recursive
formula for the the prior statistics

Predictor:

{

Ψ̂b
k,m = Fk(∆t)Ψ̂a

k,m−1 + gk,m

Rb
k,m = Fk(∆t)Ra

k,m−1Fk(∆t)∗ +Qk ,

and the posterior statistics

Corrector:











Ψ̂a
k,m = Ψ̂b

k,m +Kk.m(GΨ̂
o
k,m − GΨ̂b

k,m)

Ra
k,m = (I−Kk.mG)R

b
k,m,

Kk.m = Rb
k,mG

∗(G(Rb
k,m + Ro/M)G∗)−1.

We also consider a version of 3D-VAR by simply setting the prior
error covariance statistics to be independent of time

Bk ≡ lim
∆t→∞

Rb
k,m =

1

2
ZkΣ

2
kΓ

−1
k Z∗

k .



Observation networks: Surface Observations
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Precipitation budget: P0 =

1
τconv

[

a1θeb + a2(q − q̂) − a0(θ1 + γ2θ2)
]+

a1 = 0.1, a2 = .5, a0, γ2 = 1.2,

but a0 = 12!



Observation networks: Surface Observations +

Midtroposphere Temperature & Velocity
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Figure: Moving average of the multi-cloud model variables with their
vertical structure reconstructed from observing only wind and
temperature spatially at every 2000km and 24h. True (grey dashes),
posterior mean estimates from the 3D-VAR with moist background
covariance matrix (circles), the MSM-Filter (squares), and the 3D-VAR
with dry background covariance matrix (diamonds).



True (left) vs Observation networks: Surface Observations

+ Midtroposphere Temperature & Velocity (right)
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True (left) vs Observation networks: Surface Observations

+ Midtroposphere Temperature (right)
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True (left) vs Observation networks: Surface Observations

(right)
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observed variables, independent of
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observation times are larger than those
of the longer observation times!
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The filter except for SO is skillful
(better than climatological errors) for
u1, θ1, θeb, q

The RMS errors are similar for the
observed variables, independent of
observation times. For unobserved
variables, the RMS errors for the shorter
observation times are larger than those
of the longer observation times!

For SO+MT: When ∆t = 6h,
λ1(Fk ) = 0.9899 and when ∆t = 72h,
λ1(Fk ) = 0.8836. The shorter time is
marginally stable! In this case, the
observability condition that is necessary
for filter stability [Anderson and Moore
1979, MH 2012] is practically violated
here! In this case, the observability
matrix is ill-conditioned,

det
(

[GT (GFk )
T ]

)

≈ 10−20 .
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Summary:

◮ The key factor for accurate precipitation estimates is an accurate
estimation of the first baroclinic potential temperature. Our test
problems suggests that slight underestimation in θ1 produces a wet
atmosphere with unrealistic high precipitation rate.

◮ Our simple reduced stochastic filters are able to recover moisture
and precipitation field profile (even when online observations of
these variables are not available) provided that the filter forward
prior model is designed in a moisture coupled eigenmode basis.

◮ A better estimate for the tropical convection wave patterns requires
more than surface wind and potential temperature observations.

◮ The skill of the reduced filtering methods with horizontally and
vertically sparse observations suggests that more accurate filtered
solutions are achieved with less frequent observation times. Such a
counterintuitive finding is justified through an analysis of the
classical observability and controllability conditions which are
necessary for optimal filtering especially when the observation
timescale is too short relative to the timescale of the true signal.


