1. Examples of approximate Gaussian filters.

Figure: $v_{j+1} = \alpha \sin(v_j)$ [+noise]

4

< □ > < □ > < □ > < □ > < □ > < □ >

Figure: 3DVAR for Ex. 1.3.

Figure: ExKF for Ex. 1.3.

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 「臣」 のへで

Figure: EnKF for Ex. 1.3.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure: Convergence of e for each filter

・ロ・・日・・日・・日・・日・

- Next Example to show recent research which combines the ideas on sampling and filtering which have been outlined pedagogically in the lecture notes. Based on:
- LS11 K.J.H. Law and A.M. Stuart, Evaluating data assimilation algorithms. Monthly Weather Review 140(2012), 3757-3782. http://arxiv.org/abs/1107.4118
- Betal13 C.E.A. Brett, K.F. Lam, K.J.H. Law, D.S. McCormick, M.R. Scott, A.M. Stuart, Accuracy and stability of filters for dissipative PDEs. Physica D 245(2013) 34-45. http://arxiv.org/abs/1203.5845
- BLSZ13 D. Bloemker, K.J.H. Law, A.M. Stuart and K. Zygalalkis, Accuracy and stability of the continuous-time 3DVAR filter for the Navier-Stokes equation (Nonlinearity, To Appear). http://arxiv.org/abs/1210.1594

Let $f \in H$. Navier-Stokes as ODE on H:

$$\frac{dv}{dt} + \nu Av + B(v, v) = f, \quad v(0) = u$$

Here

$$H = \left\{ u \in L^{2}(\mathbb{T}^{2}) \middle| \nabla \cdot u = 0, \int_{\mathbb{T}^{2}} u \, dx = 0 \right\}, \text{ norm } |\cdot|$$
$$V = \left\{ u \in H^{1}(\mathbb{T}^{2}) \middle| \nabla \cdot u = 0, \int_{\mathbb{T}^{2}} u \, dx = 0 \right\}, \text{ norm } ||\cdot||$$

Introduce semigroup notation in H (weak) or V (strong):

$$v(t) = \Psi(u; t), \quad \Psi(u) = \Psi(u; h), \quad \Psi^{(j)}(u) := \Psi(u; jh)$$

・ ロ マ チ 雪 マ チ 雪 マ ト キ 目 マ

э

Let $f \in H$. Navier-Stokes as ODE on H:

$$\frac{dv}{dt} + \nu Av + B(v, v) = f, \quad v(0) = u$$

Here

$$\begin{split} & H = \Big\{ u \in L^2(\mathbb{T}^2) \Big| \nabla \cdot u = 0, \int_{\mathbb{T}^2} u \, dx = 0 \Big\}, \text{ norm } |\cdot| \\ & V = \Big\{ u \in H^1(\mathbb{T}^2) \Big| \nabla \cdot u = 0, \int_{\mathbb{T}^2} u \, dx = 0 \Big\}, \text{ norm } \|\cdot\| \end{split}$$

Introduce semigroup notation in H (weak) or V (strong):

$$v(t) = \Psi(u; t), \quad \Psi(u) = \Psi(u; h), \quad \Psi^{(j)}(u) := \Psi(u; jh)$$

ヘロンス 聞とえ ほとう モン・

Let $f \in H$. Navier-Stokes as ODE on H:

$$\frac{dv}{dt} + \nu Av + B(v, v) = f, \quad v(0) = u$$

Here

$$H = \left\{ u \in L^{2}(\mathbb{T}^{2}) \middle| \nabla \cdot u = 0, \int_{\mathbb{T}^{2}} u \, dx = 0 \right\}, \text{ norm } |\cdot|$$
$$V = \left\{ u \in H^{1}(\mathbb{T}^{2}) \middle| \nabla \cdot u = 0, \int_{\mathbb{T}^{2}} u \, dx = 0 \right\}, \text{ norm } \|\cdot\|$$

Introduce semigroup notation in H (weak) or V (strong):

$$\mathbf{v}(t) = \Psi(u; t), \quad \Psi(u) = \Psi(u; h), \quad \Psi^{(j)}(u) := \Psi(u; jh)$$

Inverse Problem: Navier Stokes Equations

Define orthogonal projections onto low and high Fourier modes:

$$\begin{aligned} & \boldsymbol{P}_{\lambda} : \boldsymbol{H} \mapsto \{\varphi_{\boldsymbol{k}}(\boldsymbol{x}), |\boldsymbol{k}| \leq \lambda\}, \\ & \boldsymbol{Q}_{\lambda} : \boldsymbol{H} \mapsto \{\varphi_{\boldsymbol{k}}(\boldsymbol{x}), |\boldsymbol{k}| > \lambda.\} \end{aligned}$$

Observations:

$$y_j = P_\lambda \Psi^{(j)}(u) + \zeta_j, \quad \zeta_j \sim N(0, \Gamma)$$
$$Y_j = \{y_i\}_{i=1}^j.$$

Goal: find initial condition u given partial noisy observations Y_j .

(日) (日) (日) (日) (日) (日) (日)

Define orthogonal projections onto low and high Fourier modes:

$$P_{\lambda}: H \mapsto \{\varphi_{k}(\mathbf{x}), |\mathbf{k}| \leq \lambda\},\$$
$$Q_{\lambda}: H \mapsto \{\varphi_{k}(\mathbf{x}), |\mathbf{k}| > \lambda\}$$

Observations:

$$y_j = P_\lambda \Psi^{(j)}(u) + \zeta_j, \quad \zeta_j \sim N(0, \Gamma)$$
$$Y_j = \{y_i\}_{i=1}^j.$$

Goal: find initial condition u given partial noisy observations Y_j .

Define orthogonal projections onto low and high Fourier modes:

$$P_{\lambda}: H \mapsto \{\varphi_{k}(\mathbf{x}), |\mathbf{k}| \leq \lambda\},\$$
$$Q_{\lambda}: H \mapsto \{\varphi_{k}(\mathbf{x}), |\mathbf{k}| > \lambda\}$$

Observations:

$$y_j = P_\lambda \Psi^{(j)}(u) + \zeta_j, \quad \zeta_j \sim N(0, \Gamma)$$
$$Y_j = \{y_i\}_{i=1}^j.$$

Goal: find initial condition u given partial noisy observations Y_j.

Relative Error in Mean c/w Posterior

Mean [LS11]

method	e _{mean}
4DVAR(t=0)	0.000731491
4DVAR(t = T)	0.00130112
3DVAR	0.0634553
FDF	0.165732
LRExKF	0.00614573
EnKF	0.0596825

Relative Error in Variance c/w Posterior

Variance [LS11]

method	<i>e_{variance}</i>	
4DVAR(t=0)	0.0932748	
4DVAR(t = T)	0.220154	
3DVAR	6.34057	
FDF	28.9155	
LRExKF	0.195101	
EnKF	0.516939	

Relative Error c/w Posterior: Variance Inflation

From [LS11]:

method	e _{mean}	e _{variance}
3DVAR	0.458527	1.8214
[3DVAR]	0.27185	6.62328
LRExKF	0.632448	0.4042
[LRExKF]	0.201327	11.2449
EnKF	0.450555	0.583623
[EnKF]	0.279007	6.67466
FDF	0.189832	11.4573

- Numerics show comparison of various filters (*ad hoc*) against a full gold standard MCMC sampler (rigorously justified.). See [LS11].
- They show that, in typical data rich scenarios, the mean is well approximated by the filters, but that variance information is not.
- This effect is further complicated by *variance inflation* which is often used to stabilize filters.
- For theoretical explanation of role of variance inflation see [Betal13] and [BLSZ13].

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●