イロト イポト イヨト イヨト

Variational Data Assimilation via Sparse Regularization

Mohammad Ebtehaj^{1,2}, Efi Foufoula-Georgiou², Gilad Lerman¹

¹ School of Mathematics

²Department of Civil Engineering

June, 2013

Rainfall Prior in Wavelet Domain

Heavy tailed histogram with large mass around zero

Rainfall Prior in Wavelet Domain

Heavy tailed histogram with large mass around zero

Generalized Gaussian

 $p(x) = \exp\left(-\lambda \left|x\right|^{\alpha}\right)$

 $(\alpha=2) \rightarrow \text{Gaussian}$

 $(\alpha = 1) \rightarrow \text{Laplace}$ $p(\mathbf{x}) \propto \exp\left(-\lambda \|\mathbf{x}\|_{\alpha}^{\alpha}\right)$

where $\|\mathbf{x}\|_{\alpha}^{\alpha} = \Sigma \|x_i\|^{\alpha}$

2Ô

Rainfall Prior in Wavelet Domain

Motivations o●oo Evidence on Sparsity of Geophysical Signals VDA Via Sparse Regularization

Rainfall Sparsity

Sparsity in the derivative or wavelet domain

Rainfall Sparsity

・ロト ・回ト ・ヨト ・ヨト

- Sparsity in the derivative or wavelet domain
- 20% of the data contains 98% of the total energy
- Sparsity is a strong prior knowledge.
- How to incorporate sparsity?

Motivations 00●0 Evidence on Sparsity of Geophysical Signals VDA Via Sparse Regularization

<ロ> <同> <同> < 回> < 回> = 三三

Lorenz (1963)

$$\dot{x} = \sigma (y - x)$$
$$\dot{y} = x (\rho - z) - y$$
$$\dot{z} = xy - \beta z$$

• The system is chaotic for $\sigma = 10, \ \beta = 8/3, \ \rho = 28$

Lorenz system shows remarkable sparsity in the DCT domain

•
$$x(k) = \omega_k \sum_{t=1}^N x(t) \cos \frac{\pi (2t-1)(k-1)}{2N}$$

Sparsity in Turbulent Flow

SAFL wind tunnel

$$R_e = 4 \times 10^4$$

Variational Data Assimilation via Sparse Regularization

--- True

• The true state: $\mathbf{x}_0 \in \mathbb{R}^m$

Variational Data Assimilation via Sparse Regularization

- ▶ The true state: $\mathbf{x}_0 \in \mathbb{R}^m$
- Observation model: $\mathbf{y}_i = \mathcal{H}(\mathbf{x}_i) + \mathbf{v}_i \in \mathbb{R}^n$

Variational Data Assimilation via Sparse Regularization

- \blacktriangleright The true state: $\mathbf{x}_0 \in \mathbb{R}^m$
- Observation model: $\mathbf{y}_i = \mathcal{H}(\mathbf{x}_i) + \mathbf{v}_i \in \mathbb{R}^n$
- **b** Background state: $\mathbf{x}_0^b \in \mathbb{R}^m$

Variational Data Assimilation via Sparse Regularization

- The true state: $\mathbf{x}_0 \in \mathbb{R}^m$
- Observation model: $\mathbf{y}_i = \mathcal{H}(\mathbf{x}_i) + \mathbf{v}_i \in \mathbb{R}^n$
- **b** Background state: $\mathbf{x}_0^b \in \mathbb{R}^m$
- Error: $\mathbf{v} \sim \mathcal{N}(0, \mathbf{R}), \ \mathbf{w} \sim \mathcal{N}(0, \mathbf{B})$

Variational Data Assimilation via Sparse Regularization

- The true state: $\mathbf{x}_0 \in \mathbb{R}^m$
- Observation model: $\mathbf{y}_i = \mathcal{H}(\mathbf{x}_i) + \mathbf{v}_i \in \mathbb{R}^n$
- **b** Background state: $\mathbf{x}_0^b \in \mathbb{R}^m$
- Error: $\mathbf{v} \sim \mathcal{N}(0, \mathbf{R}), \ \mathbf{w} \sim \mathcal{N}(0, \mathbf{B})$

4D-VAR

$$\hat{\mathbf{x}}_{0}^{a} = \operatorname{argmin}_{\mathbf{x}} \left\{ \sum_{i=0}^{k} \|\mathbf{y}_{i} - \mathcal{H}(\mathbf{x}_{i})\|_{\mathbf{R}_{i}^{-1}}^{2} + \left\|\mathbf{x}_{0}^{b} - \mathbf{x}_{i}\right\|_{\mathbf{B}^{-1}}^{2} \right\}$$

s.t. $\mathbf{x}_{i} = \mathcal{M}_{0,t}(\mathbf{x}_{0})$

Variational Data Assimilation via Sparse Regularization

- The true state: $\mathbf{x}_0 \in \mathbb{R}^m$
- Observation model: $\mathbf{y}_i = \mathcal{H}(\mathbf{x}_i) + \mathbf{v}_i \in \mathbb{R}^n$
- **b** Background state: $\mathbf{x}_0^b \in \mathbb{R}^m$
- Error: $\mathbf{v} \sim \mathcal{N}(0, \mathbf{R}), \ \mathbf{w} \sim \mathcal{N}(0, \mathbf{B})$
- Φ : a pre-selected basis

R4D-VAR

$$\hat{\mathbf{x}}_{0}^{a} = \operatorname{argmin}_{\mathbf{x}} \left\{ \sum_{i=0}^{k} \|\mathbf{y}_{i} - \mathcal{H}(\mathbf{x}_{i})\|_{\mathbf{R}_{i}^{-1}}^{2} + \left\|\mathbf{x}_{0}^{b} - \mathbf{x}_{i}\right\|_{\mathbf{B}^{-1}}^{2} + \lambda \left\|\mathbf{\Phi}\mathbf{x}_{0}\right\|_{1} \right\}$$

s.t. $\mathbf{x}_{i} = \mathcal{M}_{0, t}(\mathbf{x}_{0})$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Motivations 0000 ℓ1-norm regularization VDA Via Sparse Regularization

Quadratic Programming

Assuming $\mathbf{\Phi}\mathbf{x}_0 = \mathbf{c}_0 \in \mathbb{R}^m$, then the above problem can be rewritten as,

$$\underset{\mathbf{z}_{0}}{\text{minimize}} \left\{ \frac{1}{2} \mathbf{c}_{0}^{\mathrm{T}} \mathbf{Q} \mathbf{c}_{0} + \mathbf{b}^{\mathrm{T}} \mathbf{c}_{0} + \lambda \left\| \mathbf{c}_{0} \right\|_{1} \right\}$$
(1)

where,
$$\mathbf{Q} = \mathbf{\Phi}^{-\mathrm{T}} \left(\mathbf{B}^{-1} + \underline{\mathbf{H}}^{\mathrm{T}} \mathbf{R}^{-1} \underline{\mathbf{H}} \right) \mathbf{\Phi}^{-1}$$
 and $\mathbf{b} = -\mathbf{\Phi}^{-\mathrm{T}} \left(\mathbf{B}^{-1} \mathbf{x}_{0}^{b} + \underline{\mathbf{H}}^{\mathrm{T}} \mathbf{R}^{-1} \underline{\mathbf{y}} \right)$

Having $\mathbf{c}_0 = \mathbf{u}_0 - \mathbf{v}_0$, where $\mathbf{u}_0 = \max(\mathbf{c}_0, 0) \in \mathbb{R}^m$ and $\mathbf{v}_0 = \max(-\mathbf{c}_0, 0) \in \mathbb{R}^m$ and then $\mathbf{w}_0 = [\mathbf{u}_0^T, \mathbf{v}_0^T]^T$, the more standard QP formulation of the problem is immediately followed as:

$$\underset{\mathbf{w}_{0}}{\text{minimize}} \left\{ \frac{1}{2} \mathbf{w}_{0}^{\mathrm{T}} \begin{bmatrix} \mathbf{Q} & -\mathbf{Q} \\ -\mathbf{Q} & \mathbf{Q} \end{bmatrix} \mathbf{w}_{0} + \left(\lambda \mathbf{1}_{2m} + \begin{bmatrix} \mathbf{b} \\ -\mathbf{b} \end{bmatrix} \right)^{\mathrm{T}} \mathbf{w}_{0} \right\}$$
subject to $\mathbf{w}_{0} \succeq 0.$ (2)

Obtaining $\hat{\mathbf{w}}_0 = [\hat{\mathbf{u}}_0^T, \hat{\mathbf{v}}_0^T]^T \in \mathbb{R}^{2m}$ as the solution of (2), one can easily recover $\hat{\mathbf{c}}_0 = \hat{\mathbf{u}}_0 - \hat{\mathbf{v}}_0$ and thus the initial state of interest $\hat{\mathbf{x}}_0 = \Phi^{-1}\hat{\mathbf{c}}_0$.

Gradient Projection Method

Advection-Diffusion Equation

Flat and Quadratic Top-hat (sparsity in wavelet)

$$\begin{aligned} \frac{\partial \mathbf{x}(s,\,t)}{\partial t} + a \nabla \mathbf{x}(s,\,t) &= \epsilon \nabla^2 \mathbf{x}(s,\,t) \\ \mathbf{x}(s,\,0) &= \mathbf{x}_0(s) \end{aligned}$$

Advection-Diffusion Equation

Flat and Quadratic Top-hat (sparsity in wavelet)

$$\frac{\partial \mathbf{x}(s, t)}{\partial t} + a \nabla \mathbf{x}(s, t) = \epsilon \nabla^2 \mathbf{x}(s, t)$$
$$\mathbf{x}(s, 0) = \mathbf{x}_0(s)$$

Advection-Diffusion Equation

- Flat and Quadratic Top-hat (sparsity in wavelet)
- Window sinusoid and Squared Exponential (sparsity in DCT)

$$\frac{\partial \mathbf{x}(s, t)}{\partial t} + a \nabla \mathbf{x}(s, t) = \epsilon \nabla^2 \mathbf{x}(s, t)$$
$$\mathbf{x}(s, 0) = \mathbf{x}_0(s)$$

System Equations

- Model Equation: $\mathbf{x}^i = \mathbf{M}_{0,i} \mathbf{x}^0$, where $\mathbf{M}_{0,i} = \mathbf{A}_{0,i} \mathbf{D}_{0,i}$
- Observation Model: $\mathbf{y}^{i} = \mathbf{H}\mathbf{x}^{i} + \mathbf{v}$, with $\mathbf{v} \sim \mathcal{N}\left(0, \mathbf{R}\right)$

◆ロ ▶ ◆ 圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ─ 臣 ─ のへで

White Background Error

▶ $(\mathbf{B} = \sigma_b^2 \mathbf{I}, \mathbf{R} = \sigma_r^2 \mathbf{I})$, where $\sigma_b = 0.10$ (SNR $\cong 10.5 \text{ dB}$) and $\sigma_r = 0.08$ (SNR $\cong 12 \text{ dB}$)

White Background Error

▶ (B = $\sigma_b^2 \mathbf{I}$, R = $\sigma_r^2 \mathbf{I}$), where $\sigma_b = 0.10$ (SNR $\cong 10.5 \text{ dB}$) and $\sigma_r = 0.08$ (SNR $\cong 12 \text{ dB}$)

White Background Error

▶ (B = $\sigma_b^2 \mathbf{I}$, R = $\sigma_r^2 \mathbf{I}$), where $\sigma_b = 0.10$ (SNR $\cong 10.5 \text{ dB}$) and $\sigma_r = 0.08$ (SNR $\cong 12 \text{ dB}$)

White Background Error						
	MSE_r		MAE_r		BIAS_r	
	R4D-Var	4D-Var	R4D-Var	4D-Var	R4D-Var	4D-Var
FTH	<mark>0.0188</mark>	0.0690	0.0099	0.0589	0.0016	0.0004
QTH	0.0152	0.0515	<mark>0.0083</mark>	<mark>0.0414</mark>	0.0030	0.0016
WS	0.0296	0.0959	0.0229	0.0771	<mark>0.0038</mark>	0.0022
SE	0.0316	0.0899	0.0235	0.0728	0.0018	4.26 e – 5

Table : Expected values of the ${\rm MSE}_r,~{\rm MAE}_r,$ and ${\rm BIAS}_r,$ for 30 independent runs.

Motivations 0000 *l*1-norm regularization VDA Via Sparse Regularization

Correlated Background Error

Correlated Background Error-AR(1)

Mohammad Ebtehaj

Motivations 0000 ℓ1-norm regularization VDA Via Sparse Regularization

Correlated Background Error-AR(1)

► Top panel: FTH – Bottom panel: WS

• (B = $\sigma_b^2 C_b$, R = $\sigma_r^2 I$), where $\sigma_b = 0.10$ (SNR $\cong 10.5$ dB) and $\sigma_r = 0.08$ (SNR $\cong 12$ dB)

Mohammad Ebtehaj

 ℓ 1-norm regularization

Thank You