ON HMM-LIKE INTEGRATORS AND PROJECTIVE INTEGRATION
METHODS FOR SYSTEMS WITH MULTIPLE TIME SCALES*

ERIC VANDEN-EIJNDEN 1

Abstract. HMM-like multiscale integrators and projective integration methods and are two
different types of multiscale integrators which have been introduced to simulate efficiently systems
with widely disparate time scales. The original philosophies of these methods, reviewed here, were
quite different. Recently, however, projective integration methods seem to have evolved in a way
that make them increasingly similar to HMM-integrators and quite different from what they were
originally. Nevertheless, the strategy of extrapolation which was at the core of the original projective
integration methods has its value and should be extended rather than abandoned. An attempt in
this direction is made here and it is shown how the strategy of extrapolation can be generalized to
stochastic dynamical systems with multiple time scales, in a way reminiscent of Chorin’s artificial
compressibility method and the Car-Parrinello method used in molecular dynamics. The result is a
seamless integration scheme, i.e. one that does not require knowing explicitly what the slow and fast
variables are.

Key words. Multiscale integrators; HMM; projective integration methods; stiff ODEs; averag-
ing theorems.

1. Introduction

Dynamical systems evolving on disparate time scales represent a challenge for nu-
merical simulations. Recently, two different types of numerical schemes have been
introduced to tackle such systems: projective integration methods introduced in
Refs. [12, 9] which fit within the “equation free approach” [14]; and multiscale integra-
tors introduced in Ref. [21] which fit the framework of the heterogeneous multiscale
methods [5]. These two types of schemes are different:

Projective integration methods are suitable for systems in which some slow vari-
ables can be defined which satisfy a closed (but possibly unknown) equation in the
limit of infinite separation of time scales. The key idea is to observe the dynamics
of these slow variables for a little while to estimate their rate of change via finite-
difference, then use this estimate to extrapolate their evolution over a larger time-
step. The strategy of extrapolation is central to the method: to quote Ref. [12], “The
reader might think that these should be called ‘extrapolation methods,” but that name
has already been used [...]. Hence we call the proposed methods projective integration
methods.”

HMDM-like multiscale integrators rely more explicitly on averaging theorems for
singularly perturbed Markov processes [15, 17, 19]. These give limiting equations for
the slow variables. HMM-like multiscale integrators aim at integrating these limiting
equations to get an approximation of the dynamics in the original system. This is
done by choosing an appropriate integration scheme for the limiting equation first,
then (since the coefficients in the limiting equations are usually not available in closed
analytical form) using micro-simulations to evaluate these coefficients on-the-fly when
needed.

Despite the fact that the original philosophies behind these methods were dif-
ferent, recently projective integration methods have become increasingly similar to
HMM-like multiscale integrators. Two recent cases in point of this trend are Refs. [13]
and [20] which will be discussed at more length in section 4. But why abandon the

*April 12, 2007, to be submitted
tCourant Institute, New York University, 251 Mercer street, New York, NY 10012

1

2 On projective integration methods and HMM-like integrators

extrapolation strategy underlying the original projective integration methods in favor
of HMM-like multiscale integrators? The extrapolation stragegy has its value and
should continue to be exploited. A specific attempt at such extension is made here: it
is shown how the extrapolation strategy can be extended to stochastic dynamical sys-
tems with multiple time scales to obtain a seamless integration scheme reminiscent in
its philosophy to Chorin’s artificial compressibility method [3] and the Car-Parrinello
ab initio molecular dynamics [2].

The remainder of this paper is organized as follows. The original projective
integration methods are reviewed in section 2, then HMM-like multiscale integrators
in section 3. In section 4 we discuss Refs. [13] and [20] at more length to support
our claim that projective integration methods have become very similar to HMM-like
multiscale integrators. Finally, in section 5, we discuss a possible way to extend the
extrapolation strategy.

2. Original version of projective integration methods
These are best explained on a simple example first. Consider the system of ODEs

:'v:f(iay) 2.1)
g=—-(y—o(@)) '

When ¢ is small, the variables y evolve much faster than the variables x and this
system is stiff. However, it has the property that its dynamics is rapidly (that is, on
a O(e) timescale) attracted to the slow manifold where y=¢(x)+O(g). Projective
integration methods make use of this property. The basic idea is to iterate upon the
following two-step procedure involving relaxation then extrapolation (see figure 2.1
for a schematic illustration) [12]:

1. relaxzation: take a few explicit steps with both equations in (2.1) using a
time-step dt small enough to resolve the fast motion until the system reaches
the slow manifold where y — ¢(x) =O(e) and is no longer stiff (since the right
hand-sides in both equations in (2.1) are now of order one);

2. extrapolation: extrapolate the last relaxation step along the slow manifold
over a larger time-step of size At small enough to resolve the motion on
the slow manifold but not the fast motion to get there, i.e. << At. This
extrapolation step is likely to bring the system away from the slow manifold
(i.e. y—¢(x)=0(1) in € again), and so the cycle must be repeated.

Since the system converges exponentially fast to the slow manifold, one loop takes
O(loge~1) steps and advance the system by about At. In contrast, a standard explicit
scheme with time step dt for (2.1) requires O(e~1) steps to advance by At (since At=
O(1) and 6t=0(¢)). This is why projective integration methods are computationally
advantageous.

In the context of stiff ODEs, projective integration methods bear similarity with
implicit methods [11]. To see why, consider the backward Euler scheme for (2.1):

xn+1 =" + Atf(xn+1’yn+l)

At

Ayt —gam)) >

yn+1 :yn _

where At is again taken small enough to resolve the slow motion but not the fast one.
Assuming that e < At < 1, the solution of this system can be expanded in powers of &

Vanden-Eijnden 3

slow manifold

FiG. 2.1. Schematic illustration of the two-step procedure used in projective integration methods
for stiff ODEs. During the relazation stage, a few steps with time step 0t are made to bring the
system close to the slow manifold where y=¢(x), then the last update in the relazation stage is
extrapolated over a larger time step At, and the procedure is repeated. In the context of stiff ODEs,
the method is seamless, i.e. one does not need to know ¢ explicitly nor even the decomposition into
slow variables © and fast variables y.

and At as

{yn+1:¢(xn)+O(At)+O(€), (2.3)

2 =" ALf (2", $(a")) + O(A2) +0(e)

Thus (2.2) amounts to bringing y back to the slow manifold at every time-step, y" ™! ~
¢(x™), then using this value to take an explicit step in z, 2"t ~a™ + At f(z", p(z™)).
This is similar to what projective integration methods achieve. In fact, in the context
of stiff ODEs projective integration methods can be seen as poor-man methods to
implement an implicit scheme in situations in which, unlike with (2.1), identifying the
slow manifold is nontrivial and involve solving a nonlinear equation. In these cases,
projective integration methods provide us with a simple method to bypass solving
this nonlinear equation explicitly and they can be used when (2.1) is replaced by

o1 (2.4)
y=-9(zy)

o1

z=gh(z,5) (2.5)

and in both cases the dynamics is rapidly attracted toward a slow manifold (locally,
the dynamics is then governed an equation like (2.1) for some appropriate ¢(y) and
decomposition z = (z,y)).

In the context of stiff ODEs, projective integration methods do not require nor
use the local decomposition of (2.4) or (2.5) into (2.1), which is an advantage. This
justifies their label as part of the “equation free approach” [14].

Projective integration methods can be generalized to systems other than stiff
ODEs in which some suitable slow variables satisfy a closed ODE in the limit of

4 On projective integration methods and HMM-like integrators

Microscopic
description

TIME

Macroscopic
description

UN

F1G. 2.2. Reproduction of Figure 2.3 in Ref. [14] illustrating how the extraoplation strategy
used in projective integration methods can be generalized to systems other than stiff ODEs. In the
relazation stage, a few small steps are made with the full system (the “microscopic description” in
the figure) to estimate the rate of change of the slow variables (the “macroscopic description” in
the figure), then a larger extrapolation step is made, and the procedure is repeated. Here, one must
know explicitly the slow variables (i.e. how U is expressed in terms of u in this example), but not
their limiting equation. For details see Ref. [14].

infinite separation of time scales (see figure 2.2 for a schematic illustration) [14]. In
this case, projective integration methods stop being seamless (the slow variables must
be known explicitly) and they are based on the same idea of extrapolation: observe
the evolution of the slow variables for a few small time-steps dt in order to estimate
their rate of change via finite-difference, then use this estimate to extrapolate their
evolution over a larger time-step At. For a system like (2.5), possibly without slow
manifold structure but such that slow variables x exist and can be expressed in terms
of z as £ =0(z) for some known 6, this amount to using e.g.

O(z(t+Mdt)) —0(z(t+ (M —1)dt))

2.
50 (2.6)
to estimate the rate of change of the slow variables x, then
Mét)) — M-1
2t + Aty =a(t) + 2 OEEEMOD) Z 0=+ (M = 1)d1)) (2.7)

ot

to extrapolate their motion. To iterate upon this procedure, the variables z must then
be reinitialized consistently with the current value of z, i.e. we must find z(¢t+ At)
such that 0(z(t+ At)) =z(t+ At) [14].

3. HMM-type multiscale integrators

To facilitate comparisons and stress the differences between the two types of
methods, let us first consider multiscale integrators in the case of stiff ODEs, e.g. the
system (2.4). As e —0, the dynamics of the slow variables is given by

&= f(z,0(z)) (3.1)

Vanden-Eijnden 5

M“‘“ MT‘ | } w

|
[’ |

X,y
o

L H'i

th ml .w a

iy

Fic. 2.3. Left panel: the solution of (2.4) with f(z,y)=—y>+cos(t) +sin(v/2t) and g(z,y) =
—y+x when e=0.1, z(0)=2 and y(0)=—1. The blue curve shows z(t), the green one y(t). After
a short transient, the dynamic settles on the slow manifold where x(t)=y(t). Also shown in red
is the solution of the limiting equation (3.1). Right panel: the solution of (8.4) with f(z,y)=
—y3 4 cos(t) +sin(v2t), g(x,y) =—y+x (same as in the left panel) and o(z,y)=1 when €=0.01,
2(0)=2 and y(0)=—1. The blue curve shows x(t), the green one y(t). There is no slow manifold
here, and y(t) keeps oscillating randomly around z(t) with variance L cven as e—0. HMM-like
integrators can be used on both examples because in both cases the slow variables x have a limiting
equation, given by (8.6) — the solution to this equation is shown in red in the figure. Seamless
projective integration methods (like implicit schemes), on the other hand, are only applicable to
the stiff ODE example shown in the left panel; for the SDE example shown in the right panel
they do not apply because one cannot extrapolate blindly in all the variables. In the SDE example,
the generalization of projective integration method discussed at the end of Sec. 2 may be used by
extrapolating in the slow variable x alone.

where y = ¢(x) characterizes the slow manifold. In general the limiting equation (3.1)
is not available explicitly since the function ¢(z) defining the slow manifold is not
known (we just know its equation, g(x,y)=0). But (3.1) can still be useful as ¢(z)
can be estimated on the fly. Indeed, given the current state of the slow variables,
say ¢, we can integrate y=1g(z",y) using e.g.

yr =y + 9"y (3.2)

After a few steps, y™™ converges toward the slow manifold, i.e. y™M ~¢(z") for
some M large enough. We can then use y™™ to approximate the right hand side
in (3.1) and integrate this equation using e.g.

2"t :m”—i—Atf(:E",y”’M) (3.3)

We then repeat the procedure starting from 2"*!. The scheme is made complete by

specifying how to reinitialize y™™; for instance we can use y"*10 =4™M Integrators
more sophisticated than forward Euler can be used in (3.2) and (3.3).

HMM-like integrators compute the coefficient in the limiting equation first (during
the so-called micro- and estimator-steps) and use it next to update the slow variables
(macro-step). This is clearly different from the extrapolation strategy used in pro-
jective integration methods where the rate of change of the slow variables is inferred

6 On projective integration methods and HMM-like integrators

by finite difference from their evolution over a short time interval — in contrast, in
HHM-like integrators, the slow variables are typicallly kept fixed while the coefficient
in their limiting equation is being estimated by integrating the equation for the fast
variables (see (3.2)). In other words, HMM-like integrators anticipate the motion of
the slow variables rather than extrapolate it. HMM-like integrators allows one to
use any suitable numerical scheme to integrate the limiting equation (3.1). Any such
numerical scheme requires estimating the value of the coefficients in the limiting equa-
tion at certain values of x, and each time this is necessary, it is done by integrating
the equation for the fast variables y at fixed z as in (3.2). Note that this requires
treating slow and fast variables separately, and hence, unlike projective integration
methods, HMM-like integrators require that these variables be known explicitly even
in the context of stiff ODEs. We will come back to this point later in section 5.

Since ¢ is in effect absent from (3.2) — the ratio 0t/e is the relevant numerical
parameter — and since the accuracy at which we must resolve ¢(z")~y™™ depends
on the overall desired accuracy but is independent of €, the cost of the multiscale
integrator to advance by At is now O(1) in e. This is slightly better than projective
integration methods (whose cost is O(loge™!) as explained before).

HMDM-like multiscale integrators can readily be generalized. Consider the follow-
ing generalization of (2.4) where the equation for the fast variables y is replaced by a
stochastic differential equation (SDE)

1 3.4
dy:gg(%y)dﬂr 3.4)

Jeolap)dw
where W (t) is a Wiener process. Unlike with (2.4), because of the noise term, the
solution to this equation never reaches a slow manifold (see figure 2.3 for a comparison
between the solution of (2.4) and (3.4)). As a result, seamless projective integration
methods (or implicit schemes) are inapplicable [1]. But the dynamics of the slow
variables z in (3.4) may still be governed by a limiting equation when £ — 0. This is a
consequence of a limiting theorem for singularly perturbed Markov processes [15, 17,
19]. Suppose that for every = we have

1/Tﬂx SO)dt— F)= [flay)du®(y) as T—oo (3.5)
TO Y _]R" yy)ap\y .

where y* () is the solution of the SDE for y in (3.4) at « fixed and p*(y) is the invariant
measure for this equation. Then the dynamics of the slow variables z in (3.4) converges
as € — 0 towards the solution of the following limiting equation

@ =F(z). (3.6)

Intuitively, (3.6) arises because y, being much faster than z, has time to equilibrate
before x varies significantly, and = only feels the averaged influence of y (hence the
time-average in (3.5) defining F'(x)).

As a result, the multiscale integrator can be easily generalized to handle (3.4) by
making use of (3.6), as originally proposed in Ref. [21]. This amounts to iterating on
the following three-step procedure (this is a simplified version of the algorithm given
in section 2.1 of Ref. [6]):

Vanden-Eijnden 7

1. micro-step: given x =z", integrate the equation for y in (3.4) at x =2™ fixed
for M + M~ steps using e.g. Euler-Maruyama’s scheme

yn,m+1 :yn,m + %g(xnvynm) + @U(xnvyn,m)gn,m’ yn,O _ ynfl,M+MT
(3.7)
where ™" are independent Gaussian variables with mean zero and variance
unity dt is taken small enough to resolve the fast motion;
2. estimator-step: use the time-series generated in the micro-step to estimate
F(z™) using e.g.

M+Mr

1
Fa")m " =om Y fla"y™™); (3:8)
T m=p+1

where M is used to temper relaxation error, My is the length of the time-
average and both are O(1) in ¢;

3. macro-step: use the estimated F™~ F(z™) to make a macro-step and get
2" using a discretized version of (3.6), e.g.

" =" 4 AtF" (3.9)

where At is taken small enough to resolve the slow motion, but not necessarily
the fast motion i.e. At>>¢e if ek 1
The cost of the multiscale integrator is again O(1) in € instead of O(s™1) for a direct
explicit scheme.

Summarizing, HMM-like integrators (unlike projective integration methods) rely
heavily on the structure of the limiting equation for the slow variables, and simply eval-
uate the coefficients in this equation numerically when such evaluation is intractable
analytically. This strategy allows one to carefully analyze the accuracy and efficiency
in the scheme by estimating the various source of errors, namely discretization errors
in the micro- and macro-solvers, statistical errors in the estimator, and the error due
to the finiteness of € [6]. This analysis make the philosophy of HMM-like integrators
in many ways antipodal to the “equation free approach.”

4. Current version of projective integration methods

As shown in sections 2 and 3, projective integration methods and HMM-like in-
tegrators were originally different both in their philosophies and in terms of practical
implementations. Yet, projective integrations methods seem to have become increas-
ingly similar to HMM-like integrators, as exemplified by Refs. [13] and [20]. Let us
discuss these references in more details to support this claim.

Ref. [13] generalizes the results of Ref. [6] where HMM-like multiscale integrators
for systems like (3.4) were analyzed in detail. The generalization consists in adding a
noise term to the equation for the slow variables in (3.4), i.e. replace this system by

da = ch(xay)dtJrfz (f,y)dW(t)
dy=—g(x,y)dt+ \/G(x,y)dW(t)

£

(4.1)

where W (t) and W (t) are independent Wiener processes. The limiting equation for
the slow variables as € =0 is

dx = F(x)dt+b(z)dW (t) (4.2)

8 On projective integration methods and HMM-like integrators

where F(z) is given by (3.5) and b(z) is defined through

1 4 x x — x
7| e ferou—@ro= [peafeosw

as T'— o0

The numerical scheme proposed in Ref. [13] is based on iterating upon the following
three-step procedure (this algorithm is the one given in the introduction of Ref. [13]
using notations adapted to the present note — the terminology, however, is the one
used in Ref. [13] and it is borrowed from Refs. [6, 21]):
1. micro-step: given x =z", integrate the equation for y in (4.1) at x =2z" fixed
for Mt steps using

ot ot
YR =y @y [Tty eyt =yt (44)

where ™" are independent Gaussian variables with mean zero and variance
unity and dt is taken small enough to resolve the fast motion;

2. estimator-step: use the time-series generated in the micro-step to estimate
F(z™) and b(z™) using e.g.

1 UL
F(:c")zF":m Zf(x”,y"’m); (4.5)
m=1
1 U
b(z™)b" (2") ~ B" = i > eyt £ @y (4.6)
m=1

then getting b™ from B™ via Cholesky decomposition (so that b"(b")T = B");
3. macro-step: use the estimated F™~ F(z™) and b™ ~b(z™) to make a macro-
step and get 1! using e.g.

" =g ALF" 4V ALY " (4.7

where n" are independent Gaussian variables with mean zero and variance

unity and At is taken small enough to resolve the slow motion, but not

necessarily the fast motion i.e. At>¢ if ek1
One notices immediately that this scheme is very similar to the HMM-like multiscale
integrator given on page 6. In fact, the integrator actually analyzed in Ref. [13] is
even closer to the HMM-like multiscale integrator analyzed in Ref. [6] because it is
assumed that the noise term in (4.1) is independent of y, i.e. fao(x,y) = fo(x). In this
case the noise term in the equation for x in (4.1) is left unaffected by the averaging
and the limiting equation (4.2) reduces to

dx=F(x)dt+ fa(x)dW (1) (4.8)

Therefore (4.6) becomes unnecessary, the micro-step and the estimator-step are iden-
tical to those in the HMM-like multiscale integrator on page 6 (with M =0), and (4.7)
reduces to (compare (3.9))

2" =g ALF™ VAL fo(2™)n" (4.9)

Vanden-Eijnden 9

Similarly, Ref. [20] analyzes a scheme which is very similar to the HMM-like
multiscale integrator given on page 6 except that (i) the slow variables x are updated
together with the variables y in the micro-step and (ii) the same random numbers
are used in successive micro-steps (i.e. £™=¢™ in (3.7)). The first modification
has the advantage that one does not have to be able to evolve the variables y alone
as in the original scheme on page 6, whereas the second one reduces the variance on
the estimate for F™~ F'(z™) [20]. This second point is made via an error analysis
similar to the one performed in Ref. [6] and, in fact, the modified algorithm proposed
in Ref. [20] is analyzed following the strategy outlined in Ref. [6].

In the author’s opinion, the shift made in Refs. [13] and [20] away from the original
philosophy of projective integration methods and towards that of HMM-like integra-
tors misses the opportunity to extend the extrapolation strategy behind projective
integration methods. Next we discuss one possible strategy to extend extrapolation
integrators to more general cases.

5. An extension of the extrapolation methods to stochastic dynamical
systems

As explained in section 3, HMM-like multiscale integrators require that one knows
explicitly what the slow variables are.! Projective integration methods, on the other
hand, are seamless when applied to stiff ODEs. Can one extend the extrapolation
strategy behind them to a wider class of systems without loosing the seamless feature
of the scheme? Here is a proposal in this direction which builds on remarks made
in [10, 6, 18].

Consider the HMM-like multiscale integrator for (4.1) in which we set Mr=0:

1. micro-step: given x =z", integrate the equation for y in (3.4) at x =2™ fixed
for M steps using e.g.

ot ot
n,m+1__, nm n ,n,m n o, n,m\e¢n,m n,0__, n—1,M,
s — M —g(z”, s + —o(a", s m U — S
y Y — 9@y) [o (at g™ e Y=y
(5.1)
2. macro-step: make a macro-step and get ™! using

2 = ALy M) VAL fo (e (5.2

(Since My =0, F" = f(z",y™M) from (3.8) and b" = fo(2™,y™M) from (4.6), and that
is why the estimator-step is not necessary.)

A priori it is not clear why the integrator above would work since (5.2) is a
very crude approximation of (4.2). Yet, this scheme does work and provide a gain in
efficiency provided only that the parameters dt, At and M are chosen such that

e At
S .
e 1 < (5.3)

The reason why was first noted in Ref. [10]. The integrator above is consistent with
the following equation (compare (4.1)):
dr=f(w,y)dt+ fo(w,y)dW (t)

1 1
dy—=— dt+ — dW (¢
Y /\59(1’71/) +\/E0(x,y) W(t)

IThis is true in general, but there are nontrivial exceptions. For instance, HMM-like integrators
can be generalized to handle kinetic Monte-Carlo schemes for chemical systems, and in this case they
are seamless. See Refs. [7, 8] for details.

(5.4)

10 On projective integration methods and HMM-like integrators

where A= At/Mdt and from (5.3), this factor satisfies
ekedk 1. (5.5)

The lower bound in (5.5) guarantees that the separation of time scale is less severe
in (5.4) than it is in the original system (4.1). In fact (5.5) (or (5.3)) can be satisfied
with Mt < At when € < 1, meaning that A, which measures the efficiency boost that
the integrator above produces over a direct explicit scheme for (4.1), can be large. On
the other hand, the upper bound in (5.5) guarantees that the slow variables in (5.4)
behave approximately as the ones in (4.1) since both systems are in a regime where
the evolution of the slow variables can be approximated by the limiting equation (3.6).
This, together with the desired accuracy, fixes the largest value of A that can be taken
and thereby indicates how to choose dt, At and M (for a more thorough discussion
of this, see Ref. [6]).

(Notice that the point made above is actually very simple. Given that the slow
variables in both (4.1) and (5.4) behave approximately in the same way provided
that (5.5) is satisfied, it is better to compute with (5.4) with as high a A as the
accuracy requirement and the limit theorem allows. This also suggests that schemes
other than the one proposed above can be used to integrate (5.4).)

Why is this useful? Suppose that instead of (4.1) one is given the following system

dz= éhl (z)dt+ %hz (2)dW (t) + h3(2)dt + hy(2)dW (t) (5.6)
where we assume that there exists a decomposition z=(x,y) such that in the new
variables (5.6) reduces to (4.1) but this decomposition is not known to us. Then the
following integrator can be used:
1. micro-step: given z=2z", integrate the equation for y in (3.4) at z =x" fixed
for M steps using e.g.

ot |6t
Zn,m—H — M + ? hl(zn,m> + ; h2(zn,m)§n,m7 zn,O — Z"; (5_7)
2. macro-step: make a macro-step and get z"*! using
2 =M Athg (2 M) 4V At hy (2 M), (5.8)

This integrator works for the same reason as the one above works: it is consistent
with
dz= %hl (z)dt+ \/%hz (2)dW (t)+hs(2)dt+ha(2)dW (t) (5.9)
where A= At/Mdt (same as before) and satisfies (5.5). However, unlike the previous
one, the new integrator does not requires us to know explicitly how to decompose z
into slow x and fast y variables! The only thing that one must be able to do is parti-
tion the right hand-side in (5.6) into fast components e~ hy(2)dt+e~/2ho(2)dW (t)
and slow ones h3(2)dt+hy(z)dW (t), which is usually much easier to do (e.g. such
decompositions are at the core of the asynchronous variational integrators developed
in Ref. [16]). And, as before, this way of thinking open the doors to other integrators
based on (5.9) instead of (5.6).
Even though this seamless method is motivated by the idea of extrapolation, after
all is said and done, it bears even more similarity with the idea of artificially increas-
ing the Mach number in Chorin’s artificial compressibility method [3] or artificially

increasing the mass of the electrons in Car-Parrinello ab initio molecular dynamics
(CPMD) [2].

Vanden-Eijnden 11

Acknowledgements. I am grateful to Weinan E for his careful reading of this

manuscript and his several suggestions to improve it. I also thank Assyr Abdullle
and Andrew Stuart for useful discussions. This work was supported in part by NSF
grants DMS02-09959 and DMS02-39625, and by ONR grant N00014-04-1-0565.

REFERENCES

Abdulle, A.; E, W.; Li, T. submitted to Comm. Comput. Phys.

Car. R.; Parrinello, M. Unified Approach For Molecular Dynamics and Density Functional
Theory. Phys. Rev. Lett. 55(22):2471-2475 (1985).

Chorin, A.J. A numerical method for solving incompressible viscous flow problems. J. Comp.
Phys. 2: 12-26 (1967).

E, W. Analysis of the Heterogeneous Multiscale Method for ordinary differential equations.
Comm. Math. Sci. 1: 423-436 (2003).

E, W.; Engquist, B. The heterogeneous multi-scale methods. Comm. Math. Sci. 1: 87-133
(2003).

E, W.; Liu, D.; Vanden-Eijnden, E. Analysis of Multiscale Methods for Stochastic Differential
Equations. Comm. Pure App. Math. 58: 1544-1585 (2005).

E, W.; Liu, D.; Vanden-Eijnden, E. Nested stochastic simulation algorithm for chemical kinetic
systems with disparate rates. J. Chem. Phys. 123: 194107 (2005)

E, W.; Liu, D.; Vanden-Eijnden, E. Nested stochastic simulation algorithm for chemical kinetic
systems with multiple time-scales. J. Comp. Phys. 221: 158-180 (2007).

Eriksson, K.; Johnson, C.; Logg, A. Explicit Time-stepping for stiff ODEs. SIAM J. Sci. Comp.
25(4):1142-1157 (2003).

Fatkullin, F.; Vanden-Eijnden, E. A computational strategy for multiscale systems with appli-
cations to Lorenz 96 model. J. Comp. Phys. 200: 605-638 (2004).

Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice
Hall, Eaglewood Cliffs, NJ, 1971.

Gear, C. W.; Kevrekidis, I. G. Projective methods for stiff differential equations: problems with
gaps in their eigenvalue spectrum. SIAM J. Sci. Comp. 24(4):109-110 (2003).

Givon, D.; Kevrekidis, I. G.; Kupferman, R. Strong Convergence of Projective Integration
Schemes for Singularly Perturbed Stochastic Differential Systems. Comm. Math. Sci. 4:
707-729 (2006).

Kevrekidis, I. G.; Gear, C. W.; Hyman, J. M.; Panagiotis, G. K.; Runborg, O.; Theodoropoulos,
C. Equation-Free, Coarse-Grained Multiscale Computation: Enabling Microscopic Simu-
lators to Perform System-Level Analysis. Comm. Math. Sci. 1: 87-133 (2003).

Khasminsky, R. Z. On Stochastic Processes Defined by Differential Equations with a Small
Parameter. Theory Prob. Applications, 11:211-228, 1966.

Lew A.; Marsden J.; Ortiz M.; West, M. Asynchronous variational integrators. Archive for
Rational Mechanics & Analysis, 167(2): 85-146 (2003).

Kurtz, T. G. A limit theorem for perturbed operator semigroups with applications to random
evolution. J. Functional Analysis 12: 55-67 (1973).

Maragliano, L.; Vanden-Eijnden, E. A temperature accelerated method for sampling free energy
and determining reaction pathways in rare events simulations. Chem. Phys. Lett. 426: 168—
175 (2006).

Papanicolaou, G. C. Some probabilistic problems and methods in singular perturbations. Rocky
Mountain J. Math. 6:653-674 (1976).

Papavasiliou, A.; Kevrekidis, I. G. Variance Reduction for the Equation-Free Simulation of
Multiscale Stochastic Systems Multiscale Model. Simul. 6(1): 70-89 (2007).

Vanden-Eijnden, E. Numerical techniques for multiscale dynamical systems with stochastic
effects. Comm. Math. Sci., 1: 385-391 (2003).

