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Summary of this talk

Question: Do the Euler equations possess some subtle geometric structure that

guides the direction of vorticity — see Peter Constantin, Geometric statistics in
turbulence, SIAM Reviews, 36, 73-98.
1. Quaternions: what are they?

2. Lagrangian particle dynamics: We find explicit equations for the
Lagrangian derivatives of an ortho-normal co-ordinate system at
each point in space. (JDG/Holm 06)

3. For the 3D-Euler equations; Ertel’'s Theorem shows how Euler fits naturally
into this framework (JDG, Holm, Kerr & Roulstone 2006).

4. Review of work on the direction of Euler vorticity, particularly that of Con-
stantin, Fefferman & Majda 1996; Deng, Hou & Yu 2005/6 & Chae 2006.

5. A different direction of vorticity result involving the pressure Hessian.
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Lord Kelvin (William Thompson) once said:

Quaternions came from Hamilton after his best work
had been done, & though beautifully ingenious, they
have been an unmixed evil to those who have touched
them in any way.

O’'Connor, J. J. & Robertson, E. F. 1998 Sir William Rowan Hamilton,

http:/ /www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Hamilton.html

Kelvin was wrong because quaternions are now used in the computer
animation, avionics & robotics industries to track objects undergoing
sequences of tumbling rotations.

e Visualizing quaternions, by Andrew J. Hanson, MK-Elsevier, 2006.

e (Quaternions & rotation Sequences: a Primer with Applications to Orbits,

Aerospace & Virtual Reality, J. B. Kuipers, Princeton University Press, 1999.
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What are quaternions? (Hamilton (1843))

Quaternions are constructed from a scalar p & a 3-vector g by forming the tetrad

3
p=[pa=pl—q o, qg-o=) go
=1
based on the Pauli spin matrices that obey the relations 0,0, = —0d;; — €;10%

0 1 0 1 1 0
o1 = 09 = o3 = :
oo T l-10 S N
Thus quaternions obey the multiplication rule

p1® Py = [p1p2 — Q1 q2, P1@2 +P2q1 + q1 X @2 .

They are associative but obviously non-commutative.
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Quaternions, Rotations and Cayley-Klein parameters

Let p = [p, g] be a unit quaternion with inverse p* = [p, —q| with p* + ¢* = 1,
which guarantees p ® p* = [1,0]. For a pure quaternion t = [0, ] there exists a

transformation v — ¢/
V=p@r@p =0, (p°— ¢)r+2p(g x r)+2q(r - q)].

Now choose p = 4-cos 16 and ¢ = 4=-n sin 10, where 1 is the unit normal to r

U=p@t@®p" =0, rcosh + (n x r)sinf],

where

p = +[cos i, nsin 16].

This represents a rotation by an angle 6 of the 3-vector r about its normal n.
The elements of the unit quaternion p are the Cayley-Klein parameters
from which the Euler angles can be calculated. All terms are quadratic in p and
q, and thus allow a double covering (+£) (see Whittaker 1945).
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General Lagrangian evolution equations

Consider the general Lagrangian evolution equation for a 3-vector w such that

Dw D 0

transported by a velocity field w. Define the scalar o, the 3-vector x, as

0 = |w| (W - @), Xo = |w| " (W x a).

for |w| # 0. Via the decomposition a = a,w + x, X w, |w| & w satisfy

M:oza|w|, D—w:x X W .
Dt Dt ¢
ay is the growth rate (Constantin 1994) & ., is the ‘swing’ rate. The ‘tetrads’
do = [ Xal 5 w = [0, w].
allow us to write this as
Do
Dt =, ® .
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Theorem: (JDG/Holm 06) If a is differentiable in the Lagrangian sense s.t.

Da
22 _ bz, ¢
Dt (®, 8),
(i) For for |w| # 0, q, and q, satisfy the Ricatti equation
LU
Dt Ja Qa = Y0 ;

(i) At each point @ there exists an ortho-normal frame (w, x,, WX x,) € SO(3)

whose Lagrangian time derivative is expressed as

%zf = Dy X w,
PSR — Dy (i x %),
%)ia = Dap X Xq 5
where the Darboux angular velocity vector D, is defined as
Dab:Xa+ﬂw7 ¢ =W+ (X, X Xp) -

a
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Lagrangian frame dynamics: tracking a particle

The dotted line represents a particle (@) trajectory moving from (a1, 1) to (a2, t2).

The orientation of the orthonormal unit vectors
{w, X, (WxX,)}

is driven by the Darboux vector D, = x, + %zi) where ¢; = w - (X, X X3)-

Thus we need the ‘quartet’ of vectors to make this process work

{u, w, a, b} .
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Proof: (i) It is clear that (with q;, = |aw, X))
D?to
Dt?
Compatibility between this and the g-equation means that

an+ ® ®to =0
Dt Ja Ja dp — Y,

=0,b]=q,® 0.

(ii) Now consider the ortho-normal frame (w, x,, W X X,) as in the Figure below.

The evolution of x, comes from

Dd + (o ® qq =
Dt Jda doa = Yp ,
and gives
Dx,
Dt — _205aXa + Xb -
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b can be expressed in this ortho-normal frame as the linear combination
b=|w|[ayw+ X, + (W x X,)] ,
Xb = Cl(’uA) X Xa) — C2XACL7

where ¢; = w - (X, X X3) and ¢o = — (X, - X3). From the Ricatti equation for
the tetrad q, = |aq, X, (Where x, = |X,|)

PXa _ —20X, + Xy, = 2 _ —20Xa — C2,
Dt Dt
There follows
%ﬁa = ciX (W X Xa) D(wDi Xo) _ Xa® = C1X; Xa
which, together with
Dw, .
Di _ Xa X w,

can be re-expressed in terms of the Darboux vector D, = x, + ;—1’&) |
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Ertel's Theorem & the 3D Euler equations

Dw
—= w-Vu=Sw Euler in vorticity format

Theorem: (Ertel 1942) If w satisfies the 3D incompressible Euler equations
then any arbitrary differentiable 1 satisfies

D Du

Proof: Consider w -V = w;

D (i) Duw; . 0 (Du
e \Wi i) = i T Wi — Uk
Dt T ot oz \ Dt ) — HHE

0 (Du
= {wjuijpy _ Willk M,k};ﬂsz’@xi (Dt)

zero under summation

D

In characteristic (Lie-derivative) form, w - 2(¢) = w - 2(0) is a Lagrangian

invariant (Cauchy 1859) and is “frozen in".
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Various references

o Ertel; Ein Neuer Hydrodynamischer Wirbelsatz, Met. Z. 59, 271-281, (1942).

e Truesdell & Toupin, Classical Field Theories, Encyclopaedia of Physics I11/1,
ed. S. Flugge, Springer (1960).

e Ohkitani; Phys. Fluids, A5, 2576, (1993).

e Kuznetsov & Zakharov; Hamiltonian formalism for nonlinear waves, Physics

Uspekhi, 40 (11), 1087- 1116 (1997).

e Bauer's thesis 2000 (ETH-Berlin); Gradient entropy vorticity, potential vortic-
ity and its history.

e Viudez; On the relation between Beltrami’s material vorticity and Rossby-
Ertel’s Potential, J. Atmos. Sci. (2001).
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Ohkitani’s result & the pressure Hessian

Define the Hessian matrix of the pressure

0%p
P=1put = {83}-8:1:-}
i Oy

then Ohkitani took © = u; (Phys. Fluids, A5, 2576, 1993).

Result: The vortex stretching vector w - Vu = Sw obeys

Dw -Vu) _D(Sw) _ = o (D“) — _Pw

Dt

Dt Dt

Thus for Euler, via Ertel’s Theorem, we have the identification:

w a=w-Vu=>5w = —Pw

w

with a quartet
(u, w, a, b) = (u, w, Sw, —Pw).
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Euler: the variables a(x,t) and x(x, t)

Sw=aw+x Xw

See JDG, Holm, Kerr & Roulstone 2006.

X —
Xy
_qp —

qo

(@) a=w- Sw
(—ap) =W Pw
q= |, x|
Dq
Dt

+q®q+4q,=0

WxSw ()
= (:J X P(.:’ (_Xb)
_[apa Xp]

Y

constrained by 7rP = Ap = —u,; ju;; = lw? — TrS2.
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Lagrangian frame dynamics: tracking an Euler fluid particle

The dotted line represents the fluid packet (e) trajectory moving from (xy,%;) to

(2, t2). The orientation of the orthonormal unit vectors
{@, X, (@xXx)}
is driven by the Darboux vector

C1 . N
D:x%—;w, cp=—@- (X X X,)-

Thus the pressure Hessian within ¢; drives the Darboux vector D.
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The o and x equations

In terms of o and 'y, the Ricatti equation for g

becomes
Do 5 Dx

Ft:XQ_OZ — Qp, Ty = T2AX T Xp-

(Galanti, JDG & Heritage; Nonlinearity 10, 1675, 1997). Stationary values are
a=1%, X=0, =7
which correspond to Burgers’-like vortices.

When tubes & sheets bend & tangle then x # 0 and ¢ becomes a full tetrad

driven by g, which is coupled back through the elliptic pressure condition.

Note: Off-diagonal elements of P change rapidly near intense vortical
regions across which x, and a;, change rapidly.
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Phase plane

On Lagrangian trajectories, the o« — x equations become

da 2 2 ox
o =X TQ o, a:—anJGC.

where C), = —X - X,

In regions of the o — x phase plane where oy, = const, C, = const there are 2

critical points:

(o, x) = (a0, Xo) 2043 = @, [%2) s 05]1/2

e The critical point in the LH-half-plane (—ay, Xo) is an unstable spiral;

e The critical point in the RH-half-plane is (ag, Xo) is a stable spiral.
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The next few slides: remarks on the “direction of vorticity” in Euler

{

2. o The work of Constantin, Fefferman & Majda 1996 and Constantin 1994
e The work of Deng, Hou & Yu 2005/6

e Can our quaternionic Ricatti equation give anything in terms of P?

1. The BKM theorem
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The Beale-Kato-Majda Theorem (CMP 94, 61-6, 1984)

Theorem: There exists a global solution of the Euler equations u €
C([0, ool; H®) N CL([0, oo]; H31) for s > 3 if, for every t* > 0,

t*
/0 Jw(7)]| oe(y dr < 00

The proof is based on ||[Vu||» < ¢l||w||o [1 + log Hs.

Thus one needs to numerically monitor only fg* |w(7)]| oo dT .

Corollary: If a singularity is observed in a numerical experiment of the form
[w|loo ~ (t* —t)~" then 3 must lie in the range 5 > 1 for the singularity to be

genuine & not an artefact of the numerical calculation.
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Constantin, Fefferman & Majda; Comm PDEs, 21, 559-571, 1996

The image W; of a set W, is given by W; = X (t, W;). W is said to be
smoothly directed if there exists a length p > 0 and a ball 0 < r < 1p such that:

1. @(-, t) has a Lipschitz extn to the ball of radius 4p centred at X (q, t) &
M = hm sup / |Va(, )HLOO (B,,) At < 00.
=T g ew
i.e. the direction of vorticity is well-behaved in the nbhd of a set of trajectories.
2. The condition supg, (w,) |w(x, t)| < msupg w, |w(x, )| holds for all t €
0, T') with m = const > 0; i.e. this nbhd captures large & growing vorticity

but not so that it overlaps with another similar region & supg, (w,) |u(z, t)| <
U(t) := sup,, |u(x, t)| < oo (Cordoba & Fefferman 2001; for tubes).

Theorem: (CFM 1996) Assume that W is smoothly directed as in (i)—(ii).
Then d atimet >0 & a constant ' s.t. forany0 <ty <T and0<t—ty <7

sup |w(z, t)| <T' sup |w(w, to)].
BT(Wt) B,O(Wt)
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The work of Deng, Hou & Yu; Comm PDEs, 31, 293-306, 2006

Consider a family of vortex line segments L; in a region of max-vorticity. Denote
by L(t) the arc length of L;, n the unit normal & k the curvature. DHY define

Us(t) = e (u-@)(z,1) — (u- @) (y,1)|,

U,(t) = maxp, |u - n|, and M(t) = max (||V - @||foc(z,), |15l Loo(zy)) -

Theorem: (Deng, Hou & Yu 06): Let A, B € (0,1) with B=1— A, and Cj

be a positive constant. If

1. Up(t) + Un(t) S (T — )74,
2. M(#)L(t) < Cy,
3. L(t) > (T —t)®,

then there will be no blow-up up to time T'.

Also J. Deng, T. Y. Hou & X. Yu; Comm. PDEs, 30, 225-243, 2005.
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Using the pressure Hessian

(see also Chae: fOT |S@ - P®||oo dT < 00; Comm. P&A-M., 109, 1-21, 2006).

Theorem: (JDG, Holm, Kerr & Roulstone 06): 3 a global solution of the
Euler equations, u € C([0, oo]; H*) N C([0, co|; H*™1) for s > 3 if

T
/ HXpHLOO(]D) dr < o0,
0

with the exception of when w becomes collinear with an e-vec of P att =1
Proof: With |Sw|* = o + x?,
D|Sw|
Dt
Because D|w|/Dt = a|w

laf|ow| + [x[]x|
(a2 + X2)1/2
. our concern is with o« > 0
D|Sw
Dt
Possible that | P&| blows up simultaneously as the angle between @ and P& — 0

< —a|Sw| +

< Jap| + ) -

thus keeping x,, finite; i.e. fot x| LooydT < 00 but f(f | atp|| LoomydT —+ 00.

J. D. Gibbon, CSCAMM; October 2006 23



Imperial College London

Frame dynamics & the Frenet-Serret equations

With w as the unit tangent vector, x as the unit bi-normal and w x x as the

unit principal normal, the matrix N can be formed

N = (w', (wxx)", X') .

with
0 —Xa 0
DN
= GN7 G = Xa 0 _01X;1
Dt
0 c1x, ] 0
The Frenet-Serret equations for a space-curve are
IN 0 K O
— = FN where F=1|1-x 071],
ds
0 —7 0

where kK is the curvature and 7 is the torsion.
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The arc-length derivative d/ds is defined by

The evolution of the curvature x and torsion 7 may be obtained from Ertel's

theorem expressed as the commutation of operators [%t? w - V} =0

d N {D d] 0

Qg— + |—, —| =
ds Dt ds

This commutation relation immediately gives

DF dG
Dt  ds

aF + + |G, F].

Thus Ertel's Theorem gives explicit evolution equations for the curvature x and

torsion 7 that lie within the matrix F' and relates them to ¢y, x, and «,.
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Mixing
Consider a passive vector line-element d£ in a flow transported by an independent

velocity field w. For small £ we have the same equations as Euler for w

Do¢ D 0
Following the analogy with Euler, Ertel’'s Theorem holds so there is a b-field:
D(0€ - Vu) Du
= 0L - —
o =9t ()

Dwu /Dt represents any dynamics one wishes to impose on the problem. Thus all

the conditions hold for Theorem 1:
1. w = 0¢
2.a=0¢ -Vu

3.b=0£-V (%) —— a Ricatti equation plus an ortho-normal frame ...
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|deal MHD

Consider a magnetic field B coupled to a fluid (divu = 0 = div B)

Du DB
— =B-VB — — =B
D V Vp D Vu

Defining Elsasser variables with 4--material derivatives (two time-clocks)

D*¥ 9§
+ + \V4
(Y _—u,ZIZB —_—_—l—v :
7 Dt Ot

the magnetic field B and v* satisfy with divo® = 0

D*vT D*B

- . — B. +
Dt VP; Dt Vv

Moffatt (1985) suggested that B takes the place of w in ideal MHD.
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Ertel's Theorem (proof omitted) for this system is

D¥(B - Vv¥)
Dt

= —PB.

With two time-clocks, we have the correspondence

w=DB at =B Vv b= —-PB

apy=DB-PB X,» = B x PB

Define tetrads q* and g, as follows
qi — [aia Xi] dpy = [@pby Xpb] .

The tetrads g~ satisfy the compatibility relation

DFg*

+ + :O
Dt T4 ®q° + qpp
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MHD-Lagrangian frame dynamics

+

We have 2 sets of orthonormal vectors B, (E x X7), X© acted on by their

opposite Lagrangian time derivatives.

DTB .
i = DT x B,
DF(B x x* .
BXX) _ DBy,
D¥x™
o~ DX

where the pair of Darboux vectors DT are defined as

cl - A
DjF:qu—X—;B, cf = B-[X* x (xp+ax)].
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